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PREFACE

These notes are part of a space technology course given at the Flight

Research Division of the NACA Langley Aeronautical Laboratory during the

early part of 1958. The course was conducted as a self-education program

within the Flight Research Division and the various Sections of the notes

were prepared for the most part by members of the Division; however, four

of the seventeen Sections were prepared by personnel from the Pilotless

Aircraft Research Division and the Compressibility Research Division who

were very helpful in making the program more complete.

The notes have been compiled on a brief time schedule and it will be

apparent to the reader that the present version is incomplete and to some

extent may lack uniformity in length, type of presentation, and technical

detail in the various Sections. Nevertheless, there has been a demand for

the notes from those wbo have seen them, and it is thought that they might

serve a useful purpose if they were made available on a wider basis. It is

believed that for the sake of expediency this goal is best acheived by making

the material available now in its present unedited form instead of following

the usual NACA editing procedures.

The notes are arranged under five broad headings. The first four

Sections are concerned with Space Mechanics; the next four with Trajectories

and Guidance; the next two with Propulsion; the next three with Heating and

Materials; and the final four with Space Environment and Related Problems.

Since these notes have not been technically edited, they are not

suitable for reference in N_CA reports.

I <

Henry A. Pearson
Course Coordinator

Maneuver Loads Branch

Flight Research Division
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SECTION I

ELEMENTARY ORBITAL MECHANICS

1.1 Motion in a Plane.

When a particle moves in a plane (or space) its

acceleration satisfies the equation F = ma, but the

quantities F and a have not only magnitude but also

direction. In order to deal with magnitudes, we can take

components along a set of coordinate axes, say the rectan-

gular XY axes, thus if the component of F along a line

is Fx, and the component of a along that line is ax,

then,

F x = ma x

snd so on.

If the particle moves in

a plane, and its coordinates

are (x,y), the components of

acceleration along the co-

ordinate axes are O

(1.1-i)

If Fx, Fy are the components of

Zhe force, the motion of the particle

is determined by the equations

3 _
Q
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(1.1-_)

m (i.I-3)

In many cases it is more convenient to use polar co-

ordinates. A particle at P is related to the origin by the

coordinates (r,@). Its velocity V is resolved into com-

ponents

along the line PQ normal to OP.

These components have the values:

vr along the line OP, and v@

V

dr

Vr = -- (l.l-h)
dt

d@
v_ = r-- (i.I-5)

dt

The acceleration also has components ar along OP

and a@ along PQ. Projection along the appropriate axes

and a little manipulation will show that

(i.i-6)

(1.1-7)

If the force F acting on the particle has the component

F r along 0P and Fe perpendicular to OP, the motion of

the particle can be obtained by solving the equations

5 <
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1.2

ma r = F r (1.1-8)

ma@ = F@ (1.1-9)

These equations are the starting point for studying the orbit

of an earth satellite.

Gravitational Forces.

Two bodies of masses m and M are attracted by a

force proportional to the product of the masses, and inversely

GmM

proportional to the distance between them, or _ •

The inverse square concept, associated with the name of

Newton (1687) which was also independently proposed by Hooke

(of Hooke's Law fame) has been called "the greatest dis-

covery in nature that ever was since the World's Creation".

If the origin is taken as the center of mass M, the point

P as the center of mass m, then the positive direction of

r is outward, while the force is directed back along r and

_A_LA_

-- z (i.2-I)

Hence, the differential equations of motion from (1.1-8) and

(1.1-9) are

P
(i.2-2)



rm ._ = o
r (1.2-3)

We are thus assuming that there are no drag or accelerat-

ing forces at right angles to the radius vector and affect-

ing the rotational motion, that is, F9 = O.

Equation (1.2-3) can be integrated immediately,

F. -d e _/<,
d % (1.2-k)

This result, which is known as Kepler's Second Law is

independent of the form or nature of the attracting force

(in this case, gravity). The constant K has a physical

meaning which can be seen from an examination of the initial

conditions. At t = 0

V I in a direction

Since rdg = V cos_dt

let the radius be rl, the velocity

relative to the normal to r.

the value of K will be

(l.2-5)
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The element of area dA swept out by

through an angle d@ is

dA= o)
at

r in moving

(1.2-6)

from which follows Kepler's Second Law (derived originally

from observation of planetary motion and published in 1618),

"each planet revolves so that the line Joining it to the sun

sweeps over equal areas in equal intervals of time". (It

should be noted that Kepler's Constant is usually given in

dA K
the literature as d-_ or _ .)

We know have the set of simultaneous equations

F/\d(._-]_"_ G F_M (1.2-7)

r" d 0 _ K (1.2-8)
dt

To find the path or the variation of r with @ we must

eliminate time between (1.2-7) and (1.2-8). It is conven-

ient to change the variable from r to u = l/r, whence

Then

c/r _U

d-_ = -F dg

7_
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With these substitutions equation (1.2-7) becomes

d8 _ K _
(1.2-9)

The solution of equation (1.2-9) can be determined by

inspection as

U -- _ -l" A ¢o5 _ (1.2-10)

where A is a constant the significance of which remains

to be determined, and thus the path of our mass m about the

center is

_/_1= G.M + A co_ (9 (1.2-11)
r K"

To determine the significance of A we need to

remember that there is a set of curves called conic sections

defined by the situation shown in the figure on this page.

Given a point F called

the Focus at a fixed distance

d from a straight llne D

called the Dlrectrlx. Then If a

point P at distance r from F

is made to move in such a way that

for any value of @

distance of P from

distance of P from

stant or

the ratio of

F to the

D is con-

P

d

D

r

PD
= constant
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then the curve defined by the point P is called a CONIC

SECTION. The constant in the above ratio is a characteristic

constant of the curve called its eccentricity _ which

determines the nature of the curve. Since the distance PD

is d - r cos @, the eccentricity is

or

r

- r co) e (1.2-12)

I ! I___ ,.
r _ + _ cos 0 (l.2-13)

But this is Just the relation (1.2-ii) that came out of our

equations for the motion of a body under an inverse square

law of attraction.

What do these curves look llke.

= O circle

O < 6 _ I elllpse

f -- I
-- I parabola

_ _ hyperbola

These curves are illustrated in figures i-i and 1-2, plotted

from equation (1.2-13) rewritten as

_d
r -- I@" 6 ¢o_ 8 (1.2-iJ4)

and as

rEe)_
r(o) 1+e  o,e
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For an ellipse there is a characteristic dimension which is

more useful than d. It is the length of the major axis,

the longest distance from one side to the other through the

focus, from perigee to apogee. Usually we use the semi-

major axis a, which is related to d by the formula

gd
= (1.2-15)

l-&"

Using this relation the orbit equation is

5e (1.2-16)

The physical significance of the constants in equation

(1.2-11) has thus been shown by comparison with equations

(1.2-13). The constant A = 1/d while the gravitational

constant G, the primary mass M, and Kepler's constant

together determine the value _d, that is

K

The mass

section,

be deferred pending a study of Just what it is that fixes the

values of _ and d. For this purpose we need to reconsider

the motion in terms of the potential and kinetic energy of

the mass m.

m moves in a path about M which is a conic

Which conic section and why are questions which must

io<
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1.3 Total Energy.

We write our principal conclusion thus far by the

equation for the motion of m about M.

I GM I
r - K" + T cos e (1.3-_)

In order to establish the factors which determine the

eccentricity and the size of the orbit it is necessary to

examine the total energy.

The kinetic energy is

_/E -- / Vz._. i__ r1_ (1.3-2)

The potential energy is defined for conservative

forces by

whe re W

dPE =-aW
Is the work defined by

(1.3-3)

_/ =/rF dr (1.3-4)

The potential energy is

/_E=_/r/C-jr _/ G MF_dr =

The total energy is then

/ '. GMr_
U =T_V-- r

GNI_
r

(l.3-5)

(1.3-6)
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One explanation for the negative sign is that the potential

energy at infinity is taken to be zero, and since potential

energy must increase as the distance from the attracting

center increases then at all distances less than infinity the

potential energy must be negative.

If we can calculate the value of

the orbit, we know it for every point.

is a minimum and Q : 0j

U for one point in

At perigee, where

by equation (1.3-1),

...L_/_ GM I
rp- (1.3-7)

At this point all of the velocity is rotational, there is no

radial component and

dG
V=r

pdt

But by Kepler's Law, for this,

e = K

(or any) point in the orbit

or with equation (1.3-7)

(1.3-8)

Inserting the values from equations (1.3-7) and (1.3-8)

in (1.3-6) gives for the Total Energy

12<
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or, from equation (1.2-17)

or _-_) (1.3-1o)

Thus the orbit is elliptic, parabolic or hyperbolic, as the

total energy is negative, zero, or positive. This in turn de-

pends upon the relative magnitudes of the kinetic and potential

energy. Hyperbolic orbits require the most kinetic energy

(or speed). For the most part we shall be interested in

elliptic orbits, (negative total energy). Such an orbit is

specified by a value of eccentricity, _ , equation (1.3-10)

and by the semi-major axis a. From equations (l. 2-15) and

(1.2-17)

(1.3-II)

From equations i(1.3-9) and (1.3-11) the total energy

for an elliptical orbit is

--_Mnn
U= 2 a (l.3-12)

Thus it is seen that the total energy in an elliptical orbit

is inversely proportional only to the semi-major axis of the

orbit.

The velocity at any point in the orbit can be obtained

by substituting equation (1.3-12) into equation (1.3-6).

IS<
°'*_
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O=-GMm I V"2a 2- /'m--" r"

(1.3-13)

1.4

gravity.

Establishment of an Orbit.

Thus far we have written equations for orbits in terms

of gravitational constants, G, the mass of the principal

corny M, a uun_tant K _^ _-_4-_i TT oll of _.h

are hard to grasp physically. In this Section we shall

convert the equations to a form containing constants which

are more familiar to us.

For example• a body of mass m has a weight mg o at

the surface of the earth because of the attractive force of

Thus we can relate this weight to the force as

=o R z

and we could substitute for the term

(z.h.-l)

GM its equivalent

¢ @

Similarly the constant K is fixed, for a rocket by con-

ditions at the instant of burnout, _e. its distance r1

from the origin, its Velocity V 1 and the angle _ its

path makes with the normal to rI. At this instant, from

equation (1.2-5)
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The total energy is

V•U=__

=-z_ r,

Hence _U_ __ ° _ o

Inserting these values in the expressions for

l.B-lO) and a (eq. 1.3-11) we find that

(1.4-_)

(1.4-5)

E (eq.

@

It is worth looking at this term Rgo. It has the dimensions

of velocity squared. Suppose we wanted to establish a

circular orbit of the radius of the earth rI = R with zero

eccentricity. The eccentricity can be zero only if the term

on the right under the radical is unity. If RI = R, If = O,

Cos _ = i, then this can be true only if VI2 = Rgo.

Hence Rgo is the square of a velocity Vo equal to the

velocity for a circular orbit of radius R. We shall write

it this way, i.e.,

V@ = __@ (1.4-7)

and with this substitution,

£;I l ¢/,e-r,Vo-,Ij °" y
IS<

-,t._,S

(1.b.-8)
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Similarly

leads to

JD/&M

_,_]A v.l

(i.3-11)

(l.h-9)

or

7,= z- vo/vj (l.h-lO)

These last equations '" " _ 11.1'4-9_, and 11,_h_!O )

determine uniquely the size and shape of an orbit in terms

of the three parameters (rl, VI, _i ) which characterize

a body at the instant it becomes a free body, i.e. for a

rocket - the instant of burnout.

1.5 Orientation of Orbits.

In addition to knowing the size and shape of an orbit

it is necessary to know the orientation of the orbit in

space, that is the location of the major axis relative to

the point of burnout. If the vehicle is launched as a free

body with the initial elevation angle (_i) equal to zero,

burnout is the perigee or apogee, depending on the speed.

If Y1 is not zero than the position of the major axis in

space is rotated with respect to the position for zero angle

of elevation.

In calculating orbits with an initial launch elevation

angle we shall use the basic orbit emuation (equation 1.2-16)

with the origin of @ at the perigee and calculate the
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initial orientation angle of launch (91) using the usual

initial conditions at burnout (VI, rl, _i).

The orbit equation is

/": 1+- ( co._G (1.2-16)

This can be expressed as

P (l.5-l)
/"-- / + E col _9

At launch

so that

- / -/-_ co_ @_ (l.5-2)

(P/,",) - I (l.5-3)

The eccentricity _ could be calculated from equation

(l.h-8); however, it will be found more convenient to use

a slightly different form.

The angle (_) between the instantaneous direction

of the velocity (V) and the normal to the radius (r)

can be given as follows: _f

_an Y = dr
rda-
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Differentiating equation (1.5-1) we obtain

d e -- (i _ e)_ 6 _,_

But from equation (1.5-1)

(/+ _ _o_e) _ =(_) "

and thus

The re fo re,

r.Ljr ---- E _l'nae ,_

(1.5-5)

f,_ 7"= _ -_ .sJ_

(1.5-6)

(I._-,,

_/.,@ (1.5-8)
or "t_. ]" = /+6 co._(9

__ _*_ _ (I. 5-9)and _ -- 51"n

Substituting _ from equation (1.5-9) into equation (1.5-3)

we obtain for the initial conditions:

or

_o_e -- C_l_,-_) o;,,,o,
, P/r, "_,. v,

(1.5-1o)

(1.5-n)

In order to cbtain the parameter p/r I in terms of the

launch conditions, we note from equation (1.3-11) that

p = (_(l-e ")- d_K'" (1.5-12)

18<
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and from equations (l.h-2)

-=0- _')- o._P

But from equation (I._-3)

(i.5-i3)

(1.5-14)

Therefore

p = _ (l.5-15)_._
and in terms of circular satellite velocity

rI

Vs at radius

(l.5-z6)

Thus all the elements for calculating orbits have been found.

These equations are listed below, and repeated in Table l-la

in the order usually found most convenient for computing orbits.

In addition, formulas frequently used in orbit calculations

are given in Table l-lb.
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Step i.

Step 2.

Step 3.

or

C--
P

/-E cosO

_n Z,

(1.5-I)

(I. 5-16

(i.5-ii

(i.5-3)

(i.5-9)

Since the angle (Y) at any point in the orbit is often

required (i.e. for re-entry angles) equation (1.5-8) is

also repeated:

I+_. cos 0

The semi-major axis is given in terms of

(I= /_EK

The semi-minor axis is

(i.5-8)

p as

(i.5-i8)

(i.5-i9)
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The foregoing ecuations (1.5-17) are well suited for the

calculation of the elements of orbits including orientation

when the initial velocity VI, initial elevation angle _i'

and initial radius rI are known. A consistent set of

numerical constants for use in orbit computations is given

in Table 1-2.

These eouatlons are written in terms of the circular

satellite velocity (Vs). In some cases it might be prefer-

able to use the escape velocity VE or the circular satellite

velocity at the surface of the earth V o as a reference

velocity. Therefore, the equations for these velocities are

given:

(1.5-20)

(1.5-21)

(1.5-22)

The orbit equation is illustrated in figure 1-3 and

the boundary conditions for the orientation angle @i are

shown in figure 1-4.

In figure 1-3 the origin is at the right focus and the

angle @ is measured in the counter clockwise direction from

4
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perigee. The vehicle is assumed to be launched as a free

body at @ = @I" The initial elevation angle _I is

positive when the initial velocity vector V I is inclined

outward from the perpendicular to the initial radius rI.

Boundaries separatin_ various values of the orientation

angle @I are shown in figure 1-)4.

presents the values of (VI/V s) and

90 ° or 270 ° as defined by

V,

The curve shown re-

_i where @I equals

(1.5-23)

This curve and the axis where _ i = 0 divide the

area into the four quadrants as shown in figure l-h and as

indicated below:

Y+

C@.J;_o.s

",'-,-, o <'i_ _-°"_ =/.o
o=l-'

V,__°_'_ _ zo

71"

Q.oar,.%

I

zr _,_, -r"

-: JW"

Z2<

0

]K

I[
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The eccentricity _ is always

these definitions.

The effect of initial velocity

positive when using

(V I) on orbits is

shown in figure 1-5 for zero initial elevation angle and in

figure 1-6 for _i = I0°" It should be noted in figure

1-4 that when the initial elevation angle is zero that

91 = O° for (VI/Vs) > i and that @i = 180° for

(VI/V s) < I so that the eccentricity for _i = 0 is

rl = o (1.5-2b)

In figure 1-6 it can be seen that when the initial

elevation angle is not zero the orientation angle @i is

not zero but is a function of (VI/Vs). The eccentricities

are larger than those in figure 1-5 but the major axes

(a) do not change from those given in figure 1-5 since the

length of the major axis depends on V I snd rI but not

The effect of initial launch

constant initial launch velocity

It is seen that the effect of changing the initial launch

angle _i on orbits for a

V I is shown in figure 1-7.

2S<



1 - 22

elevation angle _i is to change the orientation of the

orbit in space and to increase the eccentricity _ •

For example given it is seen that a l0 ° elevation angle

causes a rotation of the major axis of about 32 °.

In plotting orbits with different orientation angles

the second and succeeding orbits must be rotated through

an angle A@ :

1.6

in order to make the launch points coincide with the launch

point for the first orbit; or the orientation can be

accounted for by defining the orbit as

!
where @ is measured counterclockwise from the initial

radius rI.

Time-Speed relationship in an Orbit.

In addition to the shape and the orientation of orbits

it is also important to know the lapse time between points

in the orbit and the speed at each point in the orbit.

The speed can be obtained using the relationship of

equation (I._-3):

_4 _.
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or ,-V _,,_7 - ,-'0V, _,,, Y, (1.6-1)

or from equation (1.3-13):

or V" _ z I _-)_._: F _,
o_(vlV)_ z_ _- r p C_ _')

(1.6-2)

(1.6-3)

(1.6-Lt)

The time relationship is not as obvious and will be

derived in SECTION II. The equation derived is:

_(e)C o_e_l_X:,_.;_*v,, t '*"t..
For parabolic and hyperbolic orbit_ (E _i) the equation

becomes

(i.6-5a)

where C can be gi.ven in the following forms:

(i.6-6a)

(1.6-6b)

• -5< " ,_-. 2 ,ww, .

(i. 6-6C)
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The time in equation (1.6-5) is measured from the

origin of @ which is the perigee.

If the time from launch or from some other point is

desired, equation (1.6-5) can be used to get the difference

in the time between any two points. The time from launch

becomes :

,4t, = t(e) - Ce)

From equation (1.6-5) the period of the orbit can be

determined to be

(1.6-7)

1.7

3 (1.6-8)

-- (1.6-9)

Realizable Orbits.

Thus far our principal results are embodied in the

equations which show the relationship between the three

parameters, rl,Vl,_l, which define the position and path

of a rocket at the instant of burnout, and the orbit which

results as characterized by its semi-major axis a, its

eccentricity _ , and its orientation angle 91" It

would be nice to be able to make plots showing the relation-

ship of these factors, but _ parameters are hard to plot.
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Since the elevation angle _ does not enter into the

expression for a, we can plot this as a function of rI

and V I as in figure 1-8. The distances have been ex-

pressed in earth radii R, the speed in terms of Vo, the

speed for a circular orbit of radius R. The plot shows how

as we go farther and farther out, to establish an orbit, we

need to provide less and less speed to establish it. In

fact, if we provide too much, we_will lose it altogether

to a parabolic or hyperbolic orbit, if at any time

(1.7-1)

a speed which is called the escape _elocity. At rI = R,

V E = 36,695 ft/sec

= 25,019 mph

For many purposes, it Is convenient to normalize the

velocity not with Vo, but with a speed Vs, which varies

with altitude and is the speed for a circular orbit of radius

thus the satellite velocity is

V.
----{_/_ (1.7-2)

rl;

On this basis, figure 1-8 changes its form slightly, and

becomes figure 1-9.

In order to illustrate the relationship between

eccentricity C and launching conditions it is simplest

G- 7. < "7
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first to use Vs,

(1.4-8) becomes

rather than V o. On this basis, equation

C = - cos y (1z-3)

It is simpler in this case to use (VI/Vs) 2 as the inde-

pendent variable, since for _ = O,

2 z_z

which is simple and symmetrical to plot as shown in figure

i-I0. There is only one speed V I = Vs which at the altitude

rI will produce a circular orbit, and this only if _ = O.

Any other speed or any departure from _ = 0 will produce

a finite value of eccentricity. Thus circular orbits are

exceedingly difficult to establish as the programming re-

quirements on both thrust and direction control are very stiff.

If we want to show the same information as is given in figure

I-I0 in terms of VI/Vo, r I and _ the plot is somewhat

more complicated, as shown in figure i-ii, which is a nomogram

for the solution of equation (1.4-8).

The variation of V s and VE with the distance from

the center of the earth is shown in figure 1-12.

The real question, of course, in establishing an orbit,

is one of whether it will clear the earth. We can launch a

rocket at some distance rl, and give it a speed V I at

28<
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some angle _ , but unless the perigee distance, the

point of minimum radius, is greater than the radius of the

earth, we will not clear it, and will not even get one pass.

This ignores the atmosphere, of course, and in the practical

case, unless the perigee distance is at least 50 miles above

the surface, the orbit is of little use.

Now the orbit, in terms of a and _ may be written

_S

QC/-
r = / + _ co5 _ (1,2-16)

Hence perigee distance (9 = O) is a(l- C ). This distance

does not seem to be expressible as a simple function of

(rl, V I, _ ), but we can essily write a condition for the

limiting elevation angle _L which must not be exceeded if

a(j- E) R (1.?-_)

Combination of eouations (l.h-6) and (l.h-8) with (1.7-4)

yiel_the condition that

(r,/g)CV,/Vo) =_, ( I _ (1.7-5)
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1.8

relations which are plotted in figures 1-13 and 1-14, for

various values of rl/R from 1 to 60. Note that for

rI = R, _ must be zero, while if we wish to establish

an elliptic orbit at some other values of rI and VI,

then the elevation angle must be less than the value of _ L

shown for each value of rI. Another limiting condition

applies here_ V I cannot exceed the escape velocity if an

orbit is to be established.

Minimum Altitude Orbits.

The practical use of figures 1-13 and i-i_ is limited

by the existence of the atmosphere. The requirement for an

orbit which does not approach the earth closer than some

specified distance

is shown in figure 1-15 where the ratio

_ R
R+h,

is plotted as a function of VI/Vs for various values of

For example, let us assume we have a satellite vehicle

which we wish to launc_ into a circular orbit at 150 miles

above the earth, and the maximum expected error in launch
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angle (A _ ) is 3 degrees. Let us further assume that

we do not want the vehicle to descend below 90 miles. In

this case

r min = 01  I00= 0.985h
r!

From figure 1-15 we can see that we need an initial velocity

of about VI/V s = 1.05 or 5 percent above circular satel-

lite velocity to assure that the vehicle does not go below

90 miles.

A small section of figure 1-15 has been replotted in

figure 1-16.for values of VI/V s in the neighborhood of

V1/V s = 1.0. Also shown in figure 1-16, are the eccentricities

and orientation angles associated with the orbits.

In order to obtain a more direct measure of the minimum

altitude figure 1-17 is presented to be used in conJuction

with figures 1-15 and 1-16. Shown plotted in figure 1-17

is 4-1..^ -_.,--,^ / ......._ j.-_.,.,.,.,., r min/ el p_o_ed against the minimum altitude

min for constant values of the launch altitude. For

example, if the vehicle were launched at 150 miles altitude

at a speed ratio of V1/V s = 1.05 and _l = 3 degrees the

value of rmin/ rl from figure 1-15 is r min/ r i = 0.985.

From figure 1-17 we see that the m_nimum (perigee) altitude

will be about 90 miles.

Gi<
o
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Table 1-2

Consistent Set of Numerical Constants for Use in

Orbit Computations

Various reference sources give values of the numerical

constants (_, G, R , and go)used in orbit computations,

which differ. It would be desirable to adopt a consistent

set, that is, a set which satisfies the relation

= GM - R2 go

The following set is a consistent set.

G = 3.4_ x 10 -8 ft4/Ib sec 4

= 6.66 x 10 -8 dynes cm 2

gm 2

= I._077 x 1016 ft3/sec 2

3.986 x 1020 cm3/sec 2

W = 6.59 x 1021 short tons

rL -- _.V_ X Iu_ slugs

go = 32.2 ft/sec 2

R = 3960 miles

universal gravitation
constant

weight of earth

mass of earth

radius of earth



F

-

F-/_ I-1.- Conic sec÷ lons_ ellipse_ parat_ola, hyperbola



FI 9 1-2.- Chowac_erl_/lcs and d_rnen_ton_ o_ v_rlous conic

5eC÷lOn_ and e/I/pse_.



\

I

P
/ + E COS

Z

COB _'i

rp/' ]_an_,: _n _,LPlr'_/

£ - cos _ - I

_,benr,-s,c -- -!

iciE. I-3.- zTIlus_ rotlOn of orbi_ equolmn



:-: :i).

_t 72,:

..... :_-7-

H

h

2 L_

2_ 7_-

2.

_L

-rH :_

i .

.... _

"7- :: ii:_

:-:T _ ....
:7; :_ :T-

-"L. =i:___
.... ;i

_ i .L,

- 2__

T_-: ' N

::-:- ----. _,_:.

:rT :=: :7:::

= 71

i!itll

',ii1!1

iiiill

iTS1-

e 9< >,.:,_.:;



II

I!

II

4

C)

!



• Q •

b

t|

f,

%

|

41<



\

%

%

%

i%



4._ 3 . _ ",_





45<



46"_



i 4-1

-L,

:,j

i

m i..

_ • 7.. _

•7_ - • !_'_ _ _

....... , t:i

_ ..... 2". _ •

...... _"- _ ,'_- _J.LL i_ '_+_
• -'-- -_ '. ,4-i4-. _4-'4 --U ,, .....

'
'_ _ _ :,_ _._____',',',

::_: - __: ,-+_--
_:: 4:1: _ _ _÷ _-n- _ _,_,

i_ LiJ_i ; ; ; iJ-i-- a_- .... _ ! ! ! i_J_[ ! I ' !

___ _ ___-_ _;

.... i% !:::

_-:-_ :7£ _: {:_ _ _:_: .... :-::: -:f -:'>- _1 _'- iz__-:I_:

_-_ ,. _'! !!!:!:!!: i' 7 ::i_ .... :!!

I_-'_-_--;_-_ b_ ' ' _ _-_.... I+'P-

__.,. _. i, , _,:,:., _ :_'L'- __
.......__,,.,.,,-_-'_-: :i_ i_:-i_ 445 _1_ _ _ _-_

fill PP- .... _ .... ,,

: : ,-' , ,-_:__ i.]2:,: , , _ _. ___: i_.¢:_ ! ! ! "

.... ,-_-,- P,H_t _ ,,_-!- ;,,, _,---. _

........... __ _'t_- _ _

........ _-_ _t b_4:l

__ ,,____ m ..... ___t;':_ _-I_'_ _-_ --_

• * _t- _ _,-_ _d-id .i444 .,q.:.:;_- 4-_4..M.4-, ,+_

-- _ _-_4_ -''_ ''' _l'i I,_-:1'._-_, I,._ t I-'_1-! _'lf- _4-!-I



48<



• o



!
\



: i

__r-__

__.=__

1

i.

F_

in E'l #'1 pl

oi O I,_' _.,#

-q---C--

_1"_ it.,/I!I

: !

:t'l "l _#'It

: !

:I"%

• o:_ Jl.i# . I

°; J Z I

-_-- i :

i:

i!:i
: i

i

J:

i I i

_m
: !

i I =

: |

-/-7_._.M

: I =11

__ ..... _- i_i-
! i "

--T---- -- -F-, -.-i-

---t-
i. I il

: !

i. i :

r#

-::. r. .i:-
! :

i ] :
i-.-

, i i

• i !

i j _ i
' i

:[i !

o! ,:

- t=: _

L_ i i

]

! '

- _

,\ !

¢ :

r i\

,\

y

i i
i !]i]

'T L-

:!

=:t::=--

_ I/"l

"-II _"

.I

hi-: -:

".]:_:-f
: ]{

:=: :7

/!i
• :::.:

....i "
:.[72

i|t: ::

t7_":77;ii

•,,,__L _ ..._. _,:.,



5_<



0

2.1

2 - i

SECTION II

SATELLITE TIME AND POSITION WITH RESPECT

TO A ROTATING EARTH SURFACE

Introduotion.

It is interesting and often necessary to know the

satellite time of passage and its positionover a rotat-

ing earth surface. The object of this Section is to use

the orbit equations presented in the preceding Sections

and develop time and position relationships that are a

function of the angle in the orbit plane. A brief dis-

cussion of some general features of satellite orbits will

also be presented.

Time Relationship

According to the laws of planetary motion, the three

initial or launch conditions V1, rl, and _l' determine

the future path of the satellite neglecting drag or

accelerating forces acting parallel to its path. From the

preceding Sections we know that the satellite will move

in an elliptic path

f mm

6"J
I ÷ 6 co5 _ (2.1-i)

or r =
/ _l- _ C05 @ (2.1-2)

We also know that its motion will obey the second of

Kepler's Laws that the radius vector sweeps out equal

53_ .,
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areas in equal increments of time or

(2.1-3)

The value of K

angle described by the radius vector r in a time

is simply twice the area of any tri-

dt

and sweeping through an angle d@.

Transposing and integrating (2.1-3) we obtain

o

K£ =_rade (2.l-4a)

@

Substituting equation (2.1-2) into equation (2.1-_b) we

(2.1-kb )

see that

K ,, (+6_°3_) z (2.1-5)

Integrating and putting in the limits we get the expres-

sion for time from the perigee as

(2.1-6)
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From our previous notes we know that

p = a0- _U - K_/_ R _
(2.1-7)

So that equation (2.1-6) can be written as

(2.1-8)

If we let

K 5
ii

9_R+ (2.1-9}

Now from our previous Sections we have the following

expressions

K = ,7,v,co5 r,,

P = C/!)-co_r,_V5

(1.h-3)

(1.5-_6)

(1.5-19)

Thus the value of C can be written in the following

forms

I

SS<

(2. l-lOa)



G --- _cos (2.1-10b )

(2. l-lOc )

The period is simply the value of t(@) for

so that from equations (2.1-8) and (2.1-10)

-,, j-_T = 0__),/, L_'aO

T= (j__)_

9=2_

(2.1-11a)

(2. l-llb )

T_ (2.1-11c)

where the semi-major axis

The previous section on "Orientation of Orbits" shows

that perigee point and the launching point are a function

of @l as sketched on page 2-5.
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r

o

s=#mlh_

The angle between the perigee and the launching point

is related to the launching angle _l by

_p/r, I_=n e,= cant,LP/?,-_

The time from the perigee to the launching point is

simply the value of t from equation (2.1-8) for @ = @l"

Predicting Satellite Position

One of the objectives of the IGY satellite program is

to determine the shape of the earth and its gravitational

potential. We know that the earth is not a sphere, but

57<
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an oblate shape. Consequently an artlfical earth satel-

lite is attracted to the earth by a net force that does

not vary exactly as the inverse square of the distPnce

from the earth's center and the force is not directed

exactly toward the center of the planet. However, for

locating manned satellites that may be in orbit for only

a few hours or for obtaining useful first approximations

of the orbit elements of unmanned satellites the assumption

that the earth is a uniform sphere should give results that

are reasonably accurate.

Two methods for obtaining the satellite position can

be used both of which produce identical relations provided

the same reference positions are used. One method utilizes

relationships existing in spherical triangles in locating

the orbital plane on the earth surface while a second method

uses an equatorial system of co-ordlnates used by astro-

physical laboratories and other investigators (see refer-

ence l, 2 and 3 for example). Since the second method re-

quires familiarization of vector products which will be

discussed in a later section on trajectories, the position

relations using spherical triangles will be developed in

this section.

2. 2 Reference Conditions

Before we establish the reference condition which will

enable us to orient ourselves on the projected path of the
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satellite, let's familiarize ourselves with how the

satellite might move around the earth and let's review

some relationships that exist in any spherical triangle.

If the earth is taken as a sphere the plane of the

satellite orbit remains fixed in direction and the notation

shoe in figure 2.1 is chosen to take advantage of this

fact. The inclination angle i of the orbit plane or the

maximum latitude reached and the point N at which the

satellite crosses the equator from South to North specify

the orientation of the orbital plane in space. The follow-

ing additional notations are presented for orientation in

the equatorial and orbital planes.

Z

, 5_ Lv

z \ //f

- _- E_uoJ'onoll plane

X

59<
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whe re

0 - is the center of the earth

XOY- is the plane of the earth's equator

OX - is directed towards the point where the

satellite crosses the equator going North

OZ - points to the North pole

N - point at which the satellite crosses the

equator from South to North and is called

the ascending node

P - perigee location

- angle NOP measured in the orbit plane from
where the satellite crosses the equator to

the perigee

LV - vertex or maximum latitude reached by the
satellite (the point where the orbit cuts

the plane OYZ)

- angle in orbit plane between perigee and the

apex or maximum latitude reached by the

satellite (_ + _ = 90 °)

S - any subsequent position of the satellite

@V = angle in orbital plane from the apex to
the subsequent position S of the satel-
lite

@ - angle in orbital plane measured .from the

perigee (@ = _ + @V) (usually called the

true anomaly angle)

i - inclination angle of the orbit plane

60<
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To derive the relation between the latitude, longitude,

and the angle @V we use the following spherical tri-

angle relations

Where A, B, and C are three angles and a, b, and c are

the arc lengths of the opposite sides. From the sine

law we know that

sin A = sin B = sin C

sin a sin b sin c

and from the cosine laws

cos a = cos b cos c + sin b sin c cos A

cos C =-cos A cos B + sin A sin B cos c

If we know two sides and one angle or two angles and one

side we can solve for the unknown side or angle. The

following additional notations are presented for defining

the various additional elements
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Ap Av

where the elements not defined previously are

A - apex or vertex angle = 90 °

- angle measured from the North to satel-
lite position at perigee

6_p V - difference in longitude from perigee to
vertex A_pv = )% p - _V

A_VS- difference in longitude from vertex to

satellite A_VS = _v - )% S

A_NS - difference in longitude from nodal point

N and the satellite A_NS s _N - AS

L - latitude measured North or South of the

equator

_- colatitude = (90 - L)

- longitude measured East or West of the

prime meridian at Greenwich

Subscripts refer to particular position in

orbit plane.

62<
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From the sine law

sin A sin

sin (90 - Lp) sin (90 - LV)

_ sin

sin (90 - i)

Since the apex or vertex angle

then

A = 90 °

and sin (90 - L) =.cos L

sin_ = cos i Icos Lp
(2.2-1)

From the cosine law for two sides and one angle

cos (90 - Lp) = cos (90 - i) cos

+ sin (90 - i) sin _S cos 90 °

or

and

sin Lp = sin i cos

sin Lp /cos _ = sin i
(2.2-2)

From the cosine law for two angles and one side

(2.2-3)

63<
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2.3 Position from Nodal Point

For any other latitude and longitude location from

the ascending node position N on the equator the follow-

ing quantities for a non-rotatlng earth are derived:

Latitude

From the cosine law

co., (9o- L,)=

Or

cos (eo- z) co_ ev

5//J L a = 51,_ i, co5 @v

COS _'V =

5IN L 5
i

5m t.,

now from our previous notations we know that

@

(.,0+(3= 90

(2.3-1)

Latitude on the earth surface is directly related to

declination which is reckoned In degrees North and

South of the celestial equator.

G4<
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then

so

and

_,,,= - [_o - c_*oU

5/wW = -cos(w+_)

(2.3-2)

(2.3-3)

Substituting (2.3-2) into (2.3-1) we get the latitude of

the satellite.

(2.3-h)

Longitude

From the sine law

szuCgo-z.,) .._ o.j

we get that

cos L5
(2.3-5)

** 2. Longitude on the earth surface is related to the

right ascension, the hour angle and sidereal time

in the equatorial system of coordinates.

6S <
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since

or

then (2.3-6)

substituting (2.3-6) and (2.3-3) into (2.3-5) we get

C0.5 A "_Al_i =
(2.3-7)

Equation (2.3-7) can be put into a more convenient form

by writing it as

(2.3-7a)

It can very easily be shown by dotting a unit vector along

the normal to the orbital plane into a unit vector along a

line drawn from the center of the earth to the satellite

position that

L_

_on i. (2.3-8)

66_-
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Substituting (2.3-8) and (2.3-_) into(2.3-7a) we get

or

 .an i.

So the longitude of the satellite for a non-rotatlng

earth is given by

(2.3-9)

Since only the longitude position of the satellite is

affected by the earth's rotation the final expression

for the longitude position from the nodal point is

(2.3-lO)

where

We - rotational velocity of the earth

equal to 15°/hour or 0.25°/min

t(@) - time from perigee given by equation

(2.1-8)

The sign of the Wet(@) term is negative for satel-

lites launched East or with the earth's rotation and positive

for launchings to the West. Since equations (2.3-k) and

(2.3-i0) relate the latitude and longitude as a function

67<
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of the angle 9 in the orbit plane and time is a

function of 9 from equation (2.1-8) then equations

(2.3-_) and (2.3-10) are obviously also a function of

time. Once the longitude position of the nodal point

N is established with reference to Greenwich then a plot

of Ls(t) as the ordinate and _(t) as the abcissa is

useful in locating the satellite on a Mercator projection.

Each successive orbit is displaced in longitude by

where the period T is calculated from equation (2.1-11).

A few words about the earth's rotational velocity be-

fore some typical results are presented. We know that the

earth's rotational velocity at the equator is

= __2_R = 1037.6 mi/hr

equator 24

The rotational velocity at any latitude L above or

below the equator for a given angle _ measured from

the North is

_L = 1037.6 cos L sin

Then for a given latitude you gain the most benefit from

the earth'S rotation by launching due East ( _ = 90 °)
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Typical results

Typical results are presented to illustrate the

application of the above developed procedure. The ex-

ample presented is for the following specified require-

ments:

I.
The satellite height, h I above the launching

point is to be 150 miles. The launching velocity,

V1 should be great enough to tolerate an initial

flight path angle _ 1 of _ 3° and a minimum

radius over the launching radius rmin/rl ratio

of 0.986.

2. The launching angle should be such that the satel-

lite comes directly over the launch position at

Cape Canaveral, Florida on the second orbit

around the earth.

The orbit characteristics for the above requirements using

equations (1.5-17) from the previous Section are tabulated

below

Orbit

Launching radius r I = _ll3

Launching velocity ratio,

Initial flight path angle,

miles
VI

- 1.05
Vs

_l=O

Angle between perigee and launching point,

Semi-latus rectum, p = h,535 miles

Eccentricity, _ = 0.1025

@I = 0
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Perigee distance, rp = 4,113 miles (hp = 150 miles)

= = 1,090 miles)Apogee distance, r a 5,053 miles (h a

Period T = 105 minutes

4534.6 miles
Radius in elliptic orbit, r =

1 + 0.1025 cos @

Because _I and 91 were zero the perigee point

occurred over the launching point and consequently the

launching height was also the height at the perigee.

We now solve for the difference in longitude between

the perigee and the vertex point knowing that due to the

earth's rotation

= -O.Z,,_x 10,5'

_1/_ = -,26.°/..5 "'

('._ - 2&°/5'
'/_L- '_P = •-80 S2.@'

70<
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then A}kFv = z3° 7-5'

Knowing Lp and A 2%pv

(2.2-2) and (2.2-3) for

we solve equations (2.2-1),

and obtain

_/ = 83 ° 39'

From the same three equations then the inclination of the

orbit plane or the maximum latitude reached is

i = Lv = 29 ° 6'

and the angle in the orbit plane between the perigee and

the vertex is

Since

then

= ii ° 31.5'

+ _S = 90 °,

= 78 ° 28.5'

Knowing the inclination angle i and the angle _ in

the orbit plane from where the satellite crosses the

equator to the perigee the declination or the latitude of

the satellite from equation (2.3-h) was simply

and the incremental longitude from equation (2.3-10) is

71<
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_=0

'_,,5(°) = '_"_,,,,p= _-'_pv

= -8 °_2 &'- 7& °._2. S"

_j_O) =--/Sg _5./ West of Greenwich

so the final expression for the longitude or the right

ascession of the satellite as measured from Greenwich

was

or

where the time from perigee from equation (2.1-8) was

The Mercator projection of the initial orbit for the

above example is plotted in figure 2.2. The surface of

the earth covered did not include Europe or Asia. The

only land areas crossed other than parts of the United

States and Mexico included parts of Africa and Australia.

72<
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2.5

A plot of the distance of the satellite from the center

of the earth r as a function of the latitude L is

shown in figure 2.3. The height on the southern passage

being greater than the northern passage for the same i_

latitude. Changes in launch angle _M 1 and _ havej

been examined and the results indicate that change s in

_/1 influenc_ the eccentricity 6 and the longitude

, while changes in _ effect the latitude L.

Neither _l or _ effect the period T.

i w _r_

k!

Perturbation of a Satellite.

Without disturbing forces the orbital elements would

not vary with time and the satellite would travel in a _

elliptical orbit described by the elements. In rea1'ity
, 1

the continued action of the disturbing forces icauses the

elements or characteristics_of the orbit to chan_e With

time. These forces arise because as mentioned_p_reviously

the net force that attracts the satellite to the earth does

not vary exactly as the inverse square of the distance from

the earth's center and is not directed exactly toward the

earth's center. The other main disturbing force to the

baslc elliptic orbit results from the atmosphere. It should

be of interest, therefore, to mention what some of the dis-

turbing force effects are on the elements appearing in our

derived expressions for time and position.

Because of gravlty's more powerful effect at the

73<
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earth's bulging equator the satellite's orbit precesses

or pivots, llke a child's top slowing down. The re-

sultant effect does not decrease the inclination angle

of the orbital plane but if one revolution about a non-

rotating earth carries the satellite over the equator

at N (figure 2.1) the next circuit will cross at some

point west of point N. The rate of regression of the

line of nodes according to reference [_ is a function of

the cosine of inclination angle and is, therefore, the

greatest for an equatorial orbit. For example, for a

mean satellite radius of _,500 miles the rate of regression

is calculated to be -6._de_/day for an equatorial orbit

and -_.61 deg/day for an orbit inclined 45 ° from the

equator.

Another effect of the earth's oblateness is to rotate

the orbital plane about the earth's axis in the direction

opposite to the motion of the satellite. This rotation

in degrees/day for a given height is, according to refer-

ence I, a function of the cosine of the inclination angle

i and is, therefore, the greatest for an equatorial orbit.

Rate of rotation of Sputnik II orbital plane which was

inclined 65 ° to the NE was between 2.69 and 2.88 deg/day.

It is also found that the major axis of the ellipse

rotates in the orbital plane by so many degrees per day for

a given height. This rotation is in the same direction as

the satellite motion if the inclination angle is less than
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63.4 ° and in the opposite direction if i is greater

than 63.4. For example, for a 200 nautical mile orbital

altitude the major axis rotates about 16 deg/day in the

same direction as the satellite for a near-equatorial

orbit and at about _ deg/day in the opposite direction

for a polar orbit. Both of the above mentioned disturb-

ances cause the perigee point P to move along the orbit

so that _ the angle from where the satellite crosses

the equator to the perigee point is not constant. Con-

sequently the satellite has different periods than would

be predicted by theory. Also the height of the satellite

as it crosses any latitude going North say, may be differ-

ent on successive days.

The main effect of the atmosphere is to reduce the

length of the major axis making the orbit more nearly

circular. This is because most of the retardation due to

drag occurs near perigee; consequently there is a loss of

altitude at the subsequent apogee. The reduction in the

length of the major axis shortens the orbital period by

so many seconds per day and it is possible to estimate

the air density and the life-time of a satellite from the

rate Of decrease of the period.

7S<
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SECTION IIl

THE MOTION OF A SPACE VEHICLE WITHIN T_E EARTH-MOON SYSTEM

_.O The Restricted Three-Body Problem

So far we have been dealing with the motion of a vehicle under the

-,ttr,_ction of one large body (the Earth). If, however, the vehicle is to

operate at large distances from the Earth (in the vicinity of the Moon,

for example) then the orbit equations which have been developed are no

_en,Eer valid and we must take _nto account the forces due to the second

2"_rge body (the Moon). If the mass of the space vehicle was comparable

to the m_sses of the Moon and Earth, we would have to consider the

clssslcaS Three-_ody Problem. In this section we will deal with the

restricted Three-Body Problem in which the mass of one of the bodies

(the space vehicle) is infinitesimal in comparison with the other two

bodie_ (the Earth and the Moon). The Three-Body Problem is one of the

_ssica] problems of celestial mechanics and the names of Lagrange (1772),

.Tmcobl (i_3), Hill (1_7_), and Poincare are closely associated with the

Freblem. In this section the development of the equations of motion

follows that of Mo_lton (1902) in reference 3-1. The basic development

_u reference 3-], however, follows that of Hill (1_76) in reference 3-2.

The trajectories shown and many of the results given in this section were

taken from results of studies by the RAND Corporation (Buchheim reference

5-_) and by the Hu._,_lans(Yegorov, reference J-h). (It should be noted

that both references 5-3 and 3-4 made wide us_ of the book An Introduction

to Celestial Me chan_c_ by W. R. Mou!ton; reference 3-1.)
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3.] Equo.ti.?nsof _.!otlon(Inert!a] Ref'erene_ Axes)

The system of _es used is the inertial e_x_s system sh.ovn in Figure 5-I

and _.o where the origin is t_.ken at the center of mass of the E_rth-Meon

system, _md the pl._.ne,-f rotation of the moon about the Earth is in the

Xo' To Pl_-ne"

9:

%o

There on'e t_o radial rr_nvltationslforccs acting on the vehicle

"_b_re

Gm M].

Frl = ma I
r19

Fr2 = m_2 = .__
r22

= )2 + (Yo )2 + Zo2r].9 (xo - xol . - YOl

r22 = (×o - xo2)2 + (Yo " Yo2 )2 + _o2

_.l-I

}.]-..0
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Th_ forcesdue to the e__rth in th:_. Xo, .Vo, and zo dire:_t_,_n_ n ,_:r.:

FXl = Frl
(:<o- xoI)

r]

(Yo - Y_$)
1

rl

Z o
F =Fr --
zi 1 rl

3.1-}

2_/ng the forces due to the earth and the moon in the Xo, Yo, sund zo

directions we have:

,, (Xo - Xoz) (Xo - Xo2)
m xo = - Gm MI - Gm M2

r13 r23

(yo - yol) (yo - yo2)
m @o " " Gm M1 - Gm M2

rI 3 r2 3

" Z O Z O

m o -
rl_ r2_

3.1-4

or

,, (xo - Xol) (Xo - Xo_)
XO = - G M1 - G M2

r15 r25

" (yo - Yol) (yo - Yo2)
YO = " G M1 - G M2

rl5 r25

" Z 0 Z 0

Zo = - G MI--- G M2 r-_r15

3.1-5

83<
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5.2 Equations of Motion (Rotating Axes).

Now, let us assume that the earth and the moon revolve in circles

about their con_non center of mass. (At least for the time it would take

a vehicle to complete an orbit to the moon.) Actually, the eccentricity

is 0.0_9 - not quite circular.

_T_ _^_i_motion _v_ referr _A__to a n_......_y_t_m._of axes rotatin_with_ the

uniform angular velocity _, - the mean angular velocity of the earth-moon

system. (See Figure 3-2.) The coordinates in the new system are defined

by the following transformations:

O

_Jo

i
f Zo

qK

cos _t - sin _t 0 x

= Isin_tL!0 c°s _tOli_O i_

3.2-1

Xol

YO_" m

_COS cot - sin cot 0 x - a_ i

0 0 I: i_ ,

JL J

3.2-2

I!

Xo

y!

i
i

i

= !sln cot cos cot 0 !
J

0 0 ii
i. J

I!

Yz" a_-_yi_

3.2-3

Other useful transformations are given in table 3-1.

Substitutin_ the values from equations (3.2-I), (3.2-2), and (3.2-3)

into equ_tlons (_.!-5) we get:
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÷
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+
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+
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0
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÷
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÷
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,,r-!

I

n



3-6

Substituting the values for A, B, C, and D we have:

and

,, (x - xl) (x- x2)
x - _ - _2x= - G MZ G _%

r13 r23

(Y - Yz) (y- y2)
y +_._=_GM l G_

r15 r23

" Z Z

Z = - G M1 --- G M2--
rl 3 r23

3.2-5

Yf the position of the x rotating axis is taken through the earth-moon

axis then Yl = 0 and Y2 = 0 so that

x- =(_x-GMI

(x- xl) (x-x 2)
G_

r13 r23

II

y + _ =o_2y - G M1 y - G M2 -X-
r15 r25

3.2-6

,, Z Z

z- -G Ml G

Note that

rl2 = (xo - xol )2 + (Yo - Yol )2 + Zo2

Then from the transformation equations (5.2-i), (3.2-2), and(3.2-3) :

r12 = (x- xl) 2 + (y- yl) 2 + zZ

which is independent of t.



3-7

Thus these equations have the important property that they do not

involve explicitly the independent variable t because the coordinates of

the finite bodies have become constants because of the manner in which the

axes are rotated.

The general problem of determining the motion of a small vehicle is of

the sixth order; if it moves in the plane of the motion of the finite bodies,

it becomes fourth order.

The terms _ and 2_ are the so-called Coriolis accelerations

and _2x and _ are centrifugal terms.

In the practical case it is convenient to use a units system that does

not require either very large or very small numbers. Therefore t the units

will be changed to:

Unit of time

unit of distance -

i day

i lunar unit,

distance from earth

to moon

In this system: (Ref. 3-3)

l

= o.22_70_ rad/day

D = 1 lunar unit

GM = O.052_6587 (lunar unit) 3 (day) "2

R = 0.01655926 lunar units

Xl = - 0.01212_563 lunar units = -

X2 = 0._7_7144 lunar units = i -

M = M_ss of earth plus mass of moon

M1 = Mass of earth

M2 = Mass of moon



Mo 1
L_tt_.ng U = _"= (i - i_)

M 02._9 M

Equations (3.2-6) then becom, _ :

I!

x - 2_ _ _2_. o M (l- .)
(X - Xl)

r15
GM_

(x - x2)

r25

I!

y+ ,P_=2_,-oM(1-_) Y----oH. Y---
x r2 3rl_

Z
z =- G M (I - I_) z- G M U --

r15 r25

5.2-7

where

r12 = (x - Xl)2 + y2 + z2

r22 = (x - x2)2 + y2 + z2

These are the equations with which trajectories of moon rockets can be

computed.

SS<
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3.5 Jacob!'s Integral

L"_e only kno_rn zolution of the above eqtu_tion is the Jacobi integcal.

If

w=!_#(×2÷y2) _GM(I- _) ÷G__ 3.3-I

2 r I r 2

th_n the equ,_tions of motion (3.2-6) can be written as

" 6W

_x

If

y _ _ = __w 3.3-2
8v

:.xj.nIp_e

" 8W

_z

_AW _ 1 .,_?(.ox) G M (i - _) 2 (x - x_) - G M # 2 (x - x 2)
3x 2 r12 2r I - r22 2r 2

,:_2x - G M (i - _)
(x - xl) (x - x2)

GM#
r15 r25

r,_itlplying equations (3._-2) by 2x, _, and 9z respectively we have:

_1 °

- = +--"+
8.'<

I!

_y

I!

2;" = 2_ 8w
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_- _ r, obt_in:adding these .,,ua,i,.nswe

It _! tt

Ox 6y Oz

This equation can be integrated. For example

3.5-4

,--_nd

x X dt -- x d x = Ix)'-
2

_w _w

Ow )w _wdW = r-- d_x + -- dy + dz
ox oy _z

(_)2 + r%_,_.2+ _,_.2 . 2 + ,- + z + c = o
J\Ox oy

5.3-5

or

V2= 2W-C 5.3-6

Substituting the value of W from equation (5.5-1) into eqtu%tion (5.5-6)

we have :

v2. ;,?(x2 + y2) + 2 o, _ + 2 G M..a. c
rl rfi

3.3-7

This is the only known integral for the equations of motion. In general,

solutions of the equations of motion (equation (3.2-7)) must be obtained

by step by step integration.

90<
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5.5 Surfaces of Zero Relative V_loclty

Jac_01's Yntezral (equation (3.3-7)) will give us a great deal of

information zbout the motion in an earth-moon system. When the constant

of integration has been determined by the initial conditions, equation (3.3-7)

determines the velocity in the rotating plane at all points in space. It

is evident that V2 must be positive for real motion in the earth-moon

system. Thus the boundaries for possible motion are given for V = 0 as:

(l2_×2+.y2_ + a a M _)

rl

+20M_--=C
r2

rl2 - (x - Xl )2 + y2 + z2 5.h-i

2 2 y2 z2r2 = (x - x2) + +

Curves of zero relative velocity in the XY plane are shown in

Figure 3-B. (These curves are for illustration only and are not to scale.

Curves of zero relative velocity in the yz and yz planes are shown in

Figures 3-_ and 3-5.) The surfaces of zero relative velocity, for large

values of C, may be roughly described as consisting of a closed fold about

spherical in form about each of the large bodies, and of curtains hanging

from an asymptotic cylinder symmetrically with respect to the XY plane.

For smaller values of C the folds of the two bodies expand until they

reach each other, and then open up forming one surface surrounding both

earth and moon. For still smaller values of C the folds and curtains

meet and open up. The motion is real within the folds or outside of the

curtains.
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In Figure 3-3 the values of C are numbered such that CI > C2 > C3 ....

_'cr initial conditions of C = CI the body can move either in a closed region

about the earth or in a closed region about the moon -- it cannot travel

from the earth to the moon. Earth Satellites and ballistic missiles will

be in this class.

(It can also be shown that if the Sun and Earth are considered the

finite bodies and the moon the infinitesimal body, the constant C,

determined by the motion of the moon, is so large that fold around the

earth is closed with the moon within it. Therefore, the moon cannot recede

indefinitely from the earth within the assumptions of the method.)

For C = C5, the body can move within the closed contour around the

earth and moon so that travel to the moon is now possible. C = C2 represents

the limiting case separatin 6 regions in which it is not possible.

For C = C5, the body can escape the earth-moon system since the region

is open behind the moon. C = C_ is the limiting case at which escape

becomes possible.

In addition to these contours, within which motion is possible, there

are, for the same C values, outer boundaries beyond which motion is

possible. For example, a body (infinitesimal) from outer space cannot

approach any closer than these boundaries (curtains).

At C - C4 the inner and outer branches of the surfaces coalesce and

for C < C4 a vehicle can enter the earth-moon system.

As C decreases from C4 the opening behind the moon widens. When

C = C6 the contour also begins to open behind the earth and whe:A C = C7

only the interiors of the kidney-shaped regions can not have real motion.
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As C decreases further the area precluding motion decreases until

fina!ly at C = C6 the regions becomea point. These points make

equilateral triangles with the earth and the moon. When C < C8 no

re@ion in the x-y plane is excluded.

The s:_fa_es of zero relative velocity may also be described as the

_nve]opes of all possible orbits for given initial conditions. In Figure 3-6

the zero relative velocity contours corresponding to C2, C4, CO, and C6

aro showndrawn to scale for the earth-moon system. In Figure 3-7 are

shownthe contours corresponding to a value of C similar to CI of

F_gure 3-3, and in Figure 3-6 the contour about the earth is shown for

a walue of C corresponding to that of an earth satellite. For the earth-

moon system the contours are almost circles in the x-y plane for values

of C numerically greater than C2) (i.e. CI) since the mass of the

moon is onS_v 1/61.49 that of the earth.
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5.5 Points of Coalescence

From Figure 3-5 _md 5-6 it can be seen that there ere thrce points on

the x sxls called points of ccalescence at which double solutions ar_

ob+slned and the r_zions of possible motion are enlarged. These points

ccrrespond to C_, C5, and C6 and are" indicated below:

X_
M C4 "

C'_ 0 -
Xc; X'cm

Equation (5.5-7) in the XY plane iS

F (x, y) =_(×2 +y2) +2aM(1 -_)
rl

+ 2 G MW---- C = 0

r2
5.5-1

Th_ conditions for double points arc:

_=_,?x-2oM(:-#) (x-x:.)
bx rl5

(x - x2)
2GM_ =O

r25

_F _%v - 2 o M (1 - _) -L- 2 o M_ J--- o
= rl3 r23

5.0-2

The double polnts on the

problem are given by the conditions:

_2x . G M (l - _) (x - Xl)

$4<

x axis and the straight line solutions to the

oM. (x- x2)

[(x- =o
3.5-3
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This equation is also the first equation of (3.2-7) with

I!

X-- y= 0

Moulton (ref 3-i) has solved for the roots of this equation and they are:

r=ci = (I) " _ t3j " 9 " .......

r2cm 13J +_ (3; " 9 ÷ .......

r2c e = 2 - _-_ - 23 +
12

3.9-_

It can also be shown that the double points not o_ the x axis are

rI = l, r2 = l, such that the points form equilateral triangles with the

finite bodies regardless of their masses. These are the points labeled

C8 in Figures 3-3 and 3-6. (Note that the values of r are in lunar units.)

It can also be shown that the particular solutions on the x axis are

unstable - ie., if a small body were d/splaced a very little from the point

of solution it would, in general, deport to a comparatively great distance.

The equilateral triangle solutions, on the other hand, are stable_ - a bo_7

displaced a little would oscillate about the point of solution.

It is of interest to note that the equilateral triangle soluti_s are

known to exist in the Solar system. These are the well known Trojan

Asteroids between the Sun and the planet Jupiter. There are twelve known

asteroids in the Trojan Group, seven of which precede Jupiter in its

revolution about the Sun and five of which follow. These asteroids have

an average diameter of about 80 miles and oscillate near the equilateral

triangle point.
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The real roots in terms of distances along the x

Xcl = I - # - r2c I

= i-p+Xcm r2cm

M2 1
Since p =- =- :

M 62._5

Xce = i - _ - r2c e

axis are:

Xci = 0.83702 lunar units

rlc i = 0._919 lunar units

Xcm = 1.15560 lunar units

rlc m = 1.16773 lunar units

Xce = - 1.00505 lunar units

rlc e = - 0.99292 lunar units

Substitutlngthese values in Jacobi's integral (equation 3.3-7)

we can now solve for C2, C_, and

C2 = 0.16_61

C4 = 0.16776

C6 - 0.159_

or

C6. These values are:

(lun unlts/ )2

. 6000 ft/sec

C_. _966 ft/sec

- _32 ftl,ec

3.3-5
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It might be interesting tc ccmpare the value of Xci , the point between the

earth and the moon at which a small body would remain relatively at rest,

with the distance of the point of equal attraction between the earth and

the moon based on the static equations.

Equating the two for:res of attraction we have:

r12 r22

rr_l 2=
_1.9

\r2

rI + r2 = D

D 1 + iMl/v_

r 1
--=0.9
D

whereas r!c i = 0.549. The difference, of course, is caused by the

inclusion of the centrifugal force term _ 2x in the case of the body

rotating with the earth-moon system.
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3.6 Velocities at the Surface of the Earth Corresponding

to C2, C_, C6, and C6

The s_gnlflcance of these values of C2, Ch, and C6 can be seen

more readily if we calculate the velocity of a vehicle near the earth that

corresponds to val_es of C equal to C._, C_, e.-_ C6; We shall

arbitrarily choose a position 4,300 miles from the center of the earth

adjacent to the moon. At this position the position of the vehicle is:

Ys _

Z s =

From equation (}.3-7) then:

C = C2; V2,1 =

C - c4; V4,m

C = C6; V6,e

xs = o.oo_979

0

0

lunar units

2.57_353 lunar unlts/day

= 5_,703._J ft/sec

= 2.57_513 lunar unlts/day

= 5J_,706.h ft/sec

= 2.577292 lunar units/day

= _,752.4 ft/sec

The value of

The velocity

Cb from the equilateral triangle solution is:

C6 = 0.I_35 (lunar unlts/day) 2

V_ at the surface of the earth adjacent to the moon is:

V_ = 2.577960 lunar units/day

= _,756.5 ft/sec

L
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Thus the minimum relative velocity needed to reach the moon from the

reference position is _,703.8 ft/sec and the minimum velocity needed

to escape the earth-moon system is _,706.4 ft/sec; a difference of

only 2.6 ft/sec indicating the sensitivity of trajectories on initial

conditions. In addition, with a velocity greater thau _,736 ft/sec

the vehicle could theoretically reach any point in the earth-moon system.

Since V_,m is less than V6,e it is easier to escape from the

earth-moon system by projecting toward the moon than it is by projecting

away from the moon.
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3-7 Conversion of Relative Velocity to Velocity

in the Earth Inertial System

It should be remembered that the velociti_c _ have been talking

about are relative velocities in a rotating axes system and are defined

whereas

= (£)2 + (#)2 + (;_.)2 5.7-i

Ve2 = (_e)2 + (_,e)_ + (_.e_2 3.7-2

The velocities relative to the earth are related to the velocities in the

rotating axes system by the foll_ing transformation:

Ye
I

cos ot - sin _t 0

sin _t cos _t 0

0 0 0

(_ - ,_)

+ =(x - xz)

1

5.7-3

Therefore,

= x2 . _ + =_2 + ;,2. _(x - x_)_ + _2(x. _1)2 + ;_2

Ve2 = V2 + m2 [y2 + (x- Xl)2] + 2_ [(x- x 1) _r - :_'y]

3.7-4

Writing this in terms of the polar coordinates of earth system (rl,r) we

have in the (Xe,Ye) plane:

rl 2 = Xe2 + ye 2 = (x - Xl) 2 + y2 5.7-5

iCO <
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_nen

At time t = 0; o_t = 0:

Ve 2 = V2 + rl2e 2 + 9mrl cos _ - x sin q]

In the Fig_;ce the _ngle

ncrmal to the rnz[ius r]

and

A]so

Therefore

between the velocity vector _ and the

from the earth is

e= 90 +_'- _

= V cos _'

.7= V sin _'

(9 cos _ - _ sin n) = - V cos

Ve 2 = _ - 2_r I cos _ V + rl2_2

The m_xlm_m value of Ve will occur, then when cos _ = - 1 and the

minimum value w_l! occur when cos _ = + 1 or

3.7-6

3.7-7

3.7-8
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Now

Therefore,

(v - '_rl)< ve _< (v + -'_l)

= 0.22997

rI = 0.0179_6

_r I = 0.00h!36

2.571197 _ Ve 2 _ 2.379469 lu/day

34651 _ Ve2 _ 5k772 ft/sec

3.7-9

2.371577 S Veh S 2.3796&9 lu/day

3&65 _ _ Ve4 S 54779 ft/sec

Thus the minimum ve!ocity relative to the earth

a vehicle to the moon is

Ve = 34651 ft/sec

(Ve) required to send

The minimum velocity needed to escape the earth-moon system is

Ve = 51_694 ft/sec

The escape velocity from the reference posi_ionbased on the two body

equations is

vEe =

VE = 2.4102919_ !u/day
e

or VE = 35,214 ft/sec

Thus the two-body velocity is 560 ft/sec more than the three-body velocity.

I0 <
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5.8 Effects of Neglected Factors

Mean Distance from Moon

The distance to the moon used in reference 5-3 of 239,074 miles

differs from the mean distance 238,_57 miles determined by observation.

The distance used was derived in reference 5-3 as follows:

The period is given by

T = 2_ aI_

The mean angular velocity is given by

3.8-1

But

GMe- go_2 _ GM (1 - _)

•_ :Also a = D, the mean distance to the moon

D3 = G__M

_E

D_= 3.8-3

3.8-2

Using appropriate values of Go, R, N, and m the d_stance D = 2392074.

The difference of 217 miles is due partly to the action of the sum on the

moon and partly due to meglectimg the eccentricity of the moon's orbit.

Some factors neglected in the Three Body Problem are:

i. The gravitational field of the Sun.

2. Eccentricity of the moon's orbit.

5. Inclination of orbit of moon.

103 <
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_. Oblateness of the earth.

5. Pressure of Solar radiation.

Buchheim (ref. 3-3) has investigated these effects and his results

are listed below. The results are shown as a correction AV to the

initial velocity because of the effects of these assumptions.

FACTOR

I. Gravitational field of Sun

2. Eccentricity of moon's orbit

3. In_!ination of orbit of moon

4. Oblateness of earth

5. Pressure of Solar radiation

&V ft/sec Percent

io .o3

49 .13

2O .O6

20 .06

Thus you can see that the effects are small but probably should be

included as corrections to any moon orbit calculations.

V

104<
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3.9 Trajectories Near Minimum Velocities

In Section 5.6 and 3.7 the relative velocities corresponding to the

points of coalescence (C2, C_, C6, and C8) were determined for a reference

position 4300 miles from the center of the Earth toward the Moon. In

reference 3-_ caAcu!ztions of trajectories were made (three-body equations)

using the minimum velocity corresponding to C2, but for a reference positiom

200 kilometers above the surface of the Earth, (reference radius 40_ miles)

as indicated below:

OM

The corresponding minimum relative velocities are indicated below:

rI = _300 mi. rI = 40_ mi.

 /sec

v2 34703.8 33372.2 10.8489o

v 4 34706.4 3337_._ 10.8_968

v 6 34 732.4 3_oo. 0 lO. 83738

V8 34736.3 3_603.8 10.898_4

For the initial calculations, the initial velocity corresponding to

C2 (V2) was directed perpendicular to the initial geocentric (Earth)

ICS<
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radius and in the direction of the Moons rotation. From equation (3.7-b)

it can be seen that this orientation will give the maximum value of the

initial velocity relative to the Earth (Ve). The results of these

calculations are shown in Figure 3-9 from reference 3-4. (Note: This

figure and many of the figures to follow are taken from reference 3-2

and distances are given in kilometers and velocities in kilometers per

second.)

In Figure 3-9 are shown the first five orbital revolutions plotted

in the x y rotating axes system. Also shown are the zero relative

velocity boundaries corresponding to C2. It can be seen that the vehicle

does not reach the boundary in five orbital revolutions. The time elapsed

during these five revolutions is about 29 days. The same orbits are

shown in translating Earth axes (Xe, Ye) in Figure 3-I0. Shown are the

first and fifth orbital revolutions. It can be seen that the increase in

the apogee is noticeable but small, and the orbits appear to be very close

to two-body ellipses, lb has been estimated that about 200 orbital

revolutions wc,_id be ne essary for a vehicle to reach the boundary C2.

(This would take abou_ 3 years.)

Calculations were also made of the first orbital revolution when the

initial launch angle was changed from 7 = O° to Y = 160°. Trajectories

are shown in Figure 3-11 for the four cases indicated below.

E
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From Figure 3-11 it can be noted that the initial apogee i_ greatest

when

since Vel • Vel I • Velll • Vel V.

In examining Figures 3-9 and 3-11 it appears that the C2 boundary

night be approached more closely if the vehicle were launched behind the

Earth _ < 90° so that it night come closer to the Hoon on the first

orbital revolution:

In reference 3-_ calculations were also made using values of the

initial velocity correspor_ing to C4, C6_ and C8. Even when the initial

velocities corresponded to the velocity for which all points in the

Earth-Hoon system could be reached (C8) the trajectories did not reach

even the boundary C2 on the first orbital revolution. Therefore it is

apparent that these minimum velocities are not adequate for practical

considerations.

1G7<
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3.10 Use of Two-Body Ellipses to Approximate Lunar Orbits

Since the trajectories of Figure 3-10 are almost ellipses centered at the

Earth (geocentric) the trajectory of the first orbital revolution might be

approximated by neglecting the effect of the Moon.

If the initial radius, initial velocity, and initial launch elevation

angle are given (rl, VI, 71) , and the initial velocity is equal to or

greater than tl_ velocity necessary to reach the Moon the eccentricity

and the orientation angle 91 can be computed from the equations of

Section I.

The angle e2 is given by

cos e2 ,,_ - 1 3.10-1

108<
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where 72 is the distance from the Earth to the Moon (72 = D) and p -- r

P = rl (VI/VS) 2 cos2 71 (SECTION I) From the preceeding sketch the angle

)_ between the original Earth-Moon axis and the principal axis of the orbit

is:

_'""+_F_t(o2)-t(el)]-e2

where t(B) is the time to reach the angle B measured from the perigee.

(_e sEC_o_I)

The minimum condition for lunar impact is for r2 = ra = D. For this

case:

82 = 180 °

t(e2)= _/2

),= _ IT/2-t(el)]
D+ rp

2

Vp 2 = 2 go R2 Irp D +rp

3.10-2

3.10-3

(where the subscripts a and p refer to apogee and perigee respectively.)

_uL _ _== .,.-c_,.J.-_k._uJ. _._.,, miles the iL--Litialvelocity _ur _ perigee

launch would be

vp = _2 _/sec

whereas the minimum velocity to reach the Moon corresponding to

(_ = 180 °, see equation 3.7-_)

C2 is

Ve2 = _772 ft/sec

109<
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The escape velocfty is

VE = 3521h ft/sec

Thus the velocity obtained from the two body approach is 130 ft/sec

greater than the velocity corresponding to C2, and 312 ft/sec less than the

escape velocity.

In reference _-4 trajectories were calculated using the above equations

and also using the three body equations (equation 3.2-7) for values of

7 from O to 160 °. In Figure 3-12 the results of one of these calculations

are shown for 71 = 0 and h = 124.3 mi (200 km). The trajectory labeled

I is the two body ellipse with the initial velocity equal to Vp lequatlon

(3.10-_)). The trajectory labeled II Is an impact trajectory with Moon

computed using the three body equations (3.2-7). The three body trajectories

are shown In both the (x, y) rotating axes system and the (Xeo, Yeo)

inertial axes system (taken through the center of the Earth at t = O).

It can be seen that the trajectories are almost the same until they reach

the vicinity of the Moon. It was found in reference 3-4 that equation (3.10-3)

can be used for determining the minimum velocity necessary for striking the

Moon with an initial velocity accuracy of approximately 0.02 meters per second.

Thus the initial conditions can be calculated disregarding the influence of

the Moon. Nevertheless, the actual orbits in the vicinity of the Moon will

vary considerably from the simple elliptical orbit.
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3.11 Locus of Points of Equal Attraction

Between the Earth and the Moon

Considerable attention has been given to the point of equal gravitational

attraction between the Earth and the Moon. It has been suggested in many

sources that a space vehicle need anly reach this point of equal attraction

to reach the Moon or "to fall into the Moon."

Let rI be the distance of a space vehicle from one celestial body

and r2 the distance from another celestial body.

E

!

The locus of points of equal attraction is then given by

r2

D

8M + _M1/_2 - sin 2 eMCOS

Mz/ - 1
3.ii-i

111<
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where MI and M2

Earth and the Moon).

radius

are the mass of the two bodies (for instance, the

This locus can be shown to be equal to a sphere of

rg
E___MM=

D MI/_- - I

with its center located at D + e where

5.11-2

e= i

D MI/_ - 1
5.11-5

For the Earth-Sun

rgs----E=0.00175177
R

where in this case R is the distance between the Earth and the Sun;

or in terms of the distance from the Earth to the Moon:

For the Earth-Moon:

rgEM 0.1122
D

The sphere of equal gravitational attraction (sometimes called

"gravisphere") between the Earth and the Sun and between the Earth and

the Moon is shown in Figure 3-13. It is to be noted that the Moon is

always attrac%ed more by the Sun than by the Earth. In Figure 3-14 is

_hown the _ravltational attraction of the Earth and of the Moon along the

1_ne Joining the F.%rth end the Moon.

Ii2<
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In reference 3-4 calculations were made of am orbit which would

reach the point of equal gravitational attraction. The results are shown

in Figure 3-15. The trajectory labeled I is the ellipse neglecting the

presence of the Moon_ and the curve labeled II is the result of the three-

body calculations. The perturbation of the orbit caused by the Moon is

very noticeable in Figure 3-I_ and it cam be seen that although the point

of equal gravitational attraction is exceeded the vehicle would not

reach the Moon. Thus the belief that the vehicle need _ly reach the

point of equal gravitational attraction to reach the Moon is not true.

113<



3.12 Sphere of Influence

There is another space about attracting bodies called the Sphere of

Influence (references 3-1 and 3-_) which is more important to trajectory

studies than the "gravisphere". The Sphere of Influence is defined as

follows for the Sun-Earth system:

The location in space about the Earth where the ratio of the force

with which the Sun perturbs the geocentric (about Earth) motion of a

vehicle (Ds) to the force of the Earth's attraction (AE) is equal to the

ratio of the force with which the Earth perturbs the heliocentric (about

Sun) motion of the vehicle (DE) to the attraction of the Sun (AS) is called

the Sphere of Influence of the Earth. This definition is more clearly stated

with the equation

where DS and DE represent

respectively and AS

Earth respectively.

S

3•12-i

the disturbing force of the Sun and Earth

and AE represent the attraction of the Sun and

Within the Sphere of Influence:

Ds DE

AS

#

()

E

3.12-2

114" '
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The ratio of the force with which the Sun perturbs the geocentric

motion of a space vehicle to the force of attraction of the Earth is found

as follows:

From the preceding the acceleration of the space vehicle due to the

Earth is

Q_
Am_= -- 3.m-3

r.2

The acceleration of the space vehicle due to the Sun is

ASM = _ 3._-4

The acceleration of the Earth due to the Sun is

o_

The ratio of the disturbing effect of the Sun to the attraction of the

Earth is then

In a similar manner, the ratio of the disturbing effect with which the

Earth perturbs the heliocentric motion of a vehicle to the attraction of

the Sun is

As aZ r.2
3.12-7

The Sphere of Influence is defined as the space about the Earth in which

D_s< _ 3.12-z
A_ AS

115< ."- '
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Equating the two sides of equation 3.12-2 the value for the boundary

of the Sphere of Influence can be found to be

3.12-3

The disturbing effect is a _sximum_-hen r. is positive (nearest the Sun)

and a minimum when r. is negative (farthest from the Sun).

Now since MS > > ME, then R > > r. and the radius of the Sphere of

Influence c_nbe given approximately by

r. - R
\Ms/

r. _ o._7o9 R I_l 2/9

For the Sun-Earth system equation (3.13-4) is an excellent approximation

since MS/M E = 333,_3_. The Sphere of Influence given by equation (3.12-4)

abaft the Earth is

r, SE = 902,000 miles

or about 2.1 times the distance between the Earth and the Moon. Thus the

Sphere of Influence of the Earth includes the Moon.

The Sphere of Influence of the Moon found in the same manner (equation

(3.12-_)} is

r.EM_ 35,800mi _ 0.1498 O

This approximation for the Moon is not as exact as for the Earth since

ME/MM= 81.45. Equation (3.!2-4) caube used as a first estimate, however,

and if more accurate values aredesired this value may be substituted in

equation (3.12-3) and then a more correct value found by iteration.
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The l_cation of the Sphere of Influence (on a line between the Earth and

the Moon) found by iteration was 32,200 miles in front of the Moon 8n_

39,600 miles in back of the Moon. The average of these two values is

about the same as given by equation (3.12_).

In Figure 3-16 the Sphere of Influence for the Earth and the Moon is

shown. The Sphere of Influence of the Moon is also shown in Figure 3-13.

It will be of interest to compute the ratio of the disturbance of the

Sun on the geocentric motion of a space vehicle to the attraction of the

Earth. Within the Sphere of Influence the magnitude of the perturbing

action of the Sun will be a maximum at the boundary. This value is:

DS
-- = 0.i04

At a distance of the Moon's orbit this value is:

DS= 0.011

AE

and of course at distances less than the distance to the Moon from the

Earth the effect of the Sun is much smaller. Thus the effect of the Sun

on the motion of a space vehicle within the Earth-Moon system is small

(one percent or less) and probably can be neglected in preliminary

calculations for Earth-Moon vehicles.

The ratio of the perturbing effect of the Earth on the selenocentric

(about Moon) motion of a space vehicle to the attraction of the Moon

at the boundary of the Sphere Of Influence of the Moon is

-- = 0.702

7< .-
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Therefore the perturbing effect of the Earth is about 7C percent of

the attraction of the Moon at the boundary of the Sphere of Influence.
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3.13 Approximate _kthod of Calculating Trajectories

of Lunar Vehicles

If i_ i_ assumed that within the Sphere of Influence of a I_

that perturbations of other bodies may be neglected then orbits can be

computed using the two body equations of SECTION I. The trajectory

can be divided into two parts for the Earth-Moon system:

i. Motion toward or s_ay from the Sphere of Xufluence in which

the effect of the Moon is neglected.

2. Motion within the Sphere of Influence in which the effect of

the Earth is neglected.

The motion toward or away from the Sphere of Influence (i) is

calculated by means of the two bo_y orbit equations using the initial

conditions rl, Ve I, 71, and AI of the geocentric coordinate system.

At the point where the vehicle enters the Sphere of Influence of the

Moon the coordinates and the entry velocity Ve2 are converted to the

selenocentric (Moon) coordinate system.

The approach trajectory may be an ellipse_ a parsbola, or a

hyperbola depending on the initial velocity. In reference 3-_ it was

shown that the part of the trajectory located within the Sphere of

Influence of the Moon is alw_vs a hyperbola in selenocentric coordinates.

The Escape velocity of the Moon on the bom_ of the Sphere of

Influence is

13 .6 ft/sec
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where GM= = _Moon = 1.7283 x 1014 ft3/sec 2

Since the entry selenocentrlc velocities are always greater than

the Escape Velocity of the M_on it is apparent that the Moon cannot

"capture" the vehicle and an artificial satellite of the Moon cannot

be established without the use of retrogre_le rockets.

3.13 .i Method Of ,calculating lunar orbits using approximate

method.- The approximate method is illustrated in the sketch on the

following page. In the following description the small rotation of

the Earth about the Moon is neglected. The effects of this assumption

are discussed later.

The initial conditions for the approach trajectory as indicated in

sketch a and b are Vel , rel , 7el, and the orientation angle _ between

the major axis of the approach orbit and the initial position of the

Earth-Moon axis. The point at which the approach trajectory intersects

the Sphere of Influence is determined (either analytically or graphically)

and at this point (point 2 in the sketch) the geocentric parameters

r¢2 , re2 , and 7e2 are converted to the correspor_ling selenocentric

parameters rm22 Vm2 _ and 7m2" These values may be found in the following

manner.

Referring to sketches (a) and (b), the radial velocity of the Moon

(vJ is

is

V_= _ D 3.13-1

The angle _2 between the Earth-Moon axis D and the radius re2

q2 = ee 2 ÷ X " _t2 " "

I .0<

3.13-2

ql



The velocity vectors may _ found from the followi_ vector diagram:

Note that the numerals i, 2, 3 refer to times of consecutive

positions of the Moon.



\ V_/
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D
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The angle C2 between Ve2 and V_ is

c2 = .12- (m-.2+ n2) 3.13-3

but

7 = _/2 -CL 3.13-4

Therefore

C2 = 7e2 " _2 3.]3.'.5

The entry velocity in selenocentric coordinates is then

_=22= re22+ V2 - 2 %2 v= co, c2 I

The angle

and the geocentric radius

B ,,c_-weenthe initial selenocentric radius

The angle A2 between Ve2

re2 at time t2 is given by

sin q2
sin B =

r./ D

and V_ is given by

3.13-6

(r=2 = r.)

3.]-3-7

V_ sin C2
sin _2 = vm-_

3.1.3-3

The angle am2 is then equal to

a_2 = . - a_2 - B *A 2 3.13-9

1_4 -
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or

7m2- s-_-Te2

,_nd, of course, the final entry condition is

3.15-10

I rm2 = r. I 3.15-11

Wlth theae initial conditions (equations 3.13-6, 10, and II) the

orbit within the Sphere of Influence can be calculated by the methods

of SECTION I.

Next we must concern ourselves with the relationships of the

par_ters within the Sphere of Influence. Referring to sketch (b)

and (c) we note that the angle E2 between r. and D is given by

The angle

sin E2 = re-_2 sin _2
r.

between the Moon x axis and rm2 = r. is

_= Ee - _t2

3.13-12

3.13-13

The angle

SECTION I:

02 in sketch (c) ls the arien;atlon angle given as 01 in

The angle

selenocentrlc orbit is

The angi_ O_

02 _ 01 of SECTION I

Oo between the Moon x axis and the major axis of the

0o = 02 - ¢ -

botw#en the major axis and rm3 = r. is

05 = 2. - 02

3.13-Ih

5.15-15

125 <
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and since

and

rm2 = rm3 - r.:

7m3 - . 7m2
3- 13-16

Vm3 = Vm2 3.13-17

The angle _ between the major axis of the selenocentric orbit

-_ vm2 _- ,m3 _--

= _ - (am3 + e3)
3.13-18

or since =m3 = .Iz - 7m3

= =/z + 7m3 - e 3
3.13-19

The angle _ between the entry selenocentric velocity

the exit selenocentric velocity (Vm3) is

*--d

3.13-2o

OF

The anEle

" " 2(e 3 7m_) I 3.13-21

between the Moon x axis and the exit velocity Vm3 is

= eo + _ 3.13-22

The conditions on leaving the Sphere of Influence are found as

follows (see sketch (b) and (c)):

The angle E3 between D and rm3 - r. is

E3 = _ - _t 3 + am 3
3.13-23

I ,6 <
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Therefore the exit geocentric radius is

re32 = r.2 + D2 - 2r. D cos E3
3.13-24

.The angle C3 between

3.13-29

Therefore exit geocentric velocity is

%32. %2 ,. _2.2 % % cosc3 3.13-26

The angle _3 between re3 and D is given by

r_

sin _3 " -- sin E3
_e3

3.13-27

The angle A3 between re3 _ vm3 is givenby

V

sin A3 - _ sin C3

3.13-28

The angle %3 between the geocentric radius

vector Ve3 is then

re 3
and the velocity

I ae3="'A3 +_'wt3+_3 1
3.13-29

or since 7 --= "



_-48

F _e3 " _ + c5 " " _ I 3.15-_0

!

n3

Thus the exit geocentric conditions given by equations (5.15-24),

(3.15-26), and (5.15-50) can be. used w_th the methods of SECTION I to

compute the orbit after leaving the Sphere of Influence.

5.13.2 Motion within the lunar Sphere of Influence in Geocentric

coordinates.- The motion within the Sphere of Influence can be given

in terms of the Earth coordinate system as follows:

\
\

\

\

D

(d)

\

\
\

\
\

12.8<
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Q
_ _.n._le @Xm between t.he .Moon x

radius rm of the selenocentric orbit is

axis and the instantaneous

OXm = Om- 00 3.i3-3i

where 0m is the angle e (see SECTION I) for the selenocentric orbit.

The geoc:_ntric radius is then

I re2 = rm2 +I)2 + 2 rmD cos (eXm +a_) I

_ne angle _ is given by

and the angle @e is

sin n " ra sin (exa +
re

3.i3-32

3.i3-33

ee " mt- _ l 3.13-M

5.13.3 Effect of neglectin_ the Earth's revolution about the Moon.-

The approximate method described in the previous section was based on the

_ssumption that the Moon rotated about the center of the Earth instead

of the center of mass of the Earth-Moon system. The major effect of

this assumption is that the angle _ between the Earth-Moon axis and

the radius from the Earth to the vehicle will be in error by approximately

I percent or less. (< 0.i deg)

In calculatir_ the approach trajectory using the two-body relationships

the errors in the geocentric parameters @e and re due to the revolution

of the Earth about the center of mass will be less than 2 percent. This

1 9< ....



is a relatively large effect but can be corrected by calculating the

initial approach trajectory about the revolving Earth using the equations

of SECTION I in a step by step procedure.

In addition the trigonometric proce dures of SECTION 3.13.1 should

be used w_th caution since these were developed for the particular case

illustrated lu sketches (a), (b), and (c). In other cases certain

adjustments may have to be made based on the physical characteristics of

the orbit being calculated.

A trajectory calculated using the approximate method (ref. 3-4) is

shown in Figure 3-17. (It should be noted in Figure 3-17 and other

figures taken from reference 3-_ that the rotating y axis has been

shifted to the midpoint between the Earth and the Moon and is designated

as y'. Also in reference 3-h the ._bon was located at _t + _ as

compared to the results presented in this section, and the figures taken

from reference 3-4 have not been redrawn. )



_,i_ Characteristics of Approach Trajectories

In reference 3-4 a study of the characteristics of approach

trajectories at the boundary of the Sphere of Y_luence was made and

the results are indicated in Figures 3-18 and 3-19 and in sketch (e).

In Figure 3-18 the geocentric entry angle _e2 , the geocentric entry

velocity Ve2 , and the initial selenocentric velocity Vm2ar c plotted

against the difference between the initial geocentric velocity and the

escape velocity at the launching altitude (Vel - VeE). Curves are shovn

for entry radii of D + r. and for initial launch angles of _I = + _/2

0 O
(7 " O,180 ). It ,m_ybe noted that for initial launching velocities

greater +,h_n the escape velocity that the location of entry into the

Sphere of Influence (re = D .+r.) does not materially alter the angle

_e2 or the entry velocity Ve2. At launching speeds less than escape

velocity and near the :IninnJ_ velocity for reaching the Moon the effect

of the location of entry is mare pronounced.

Also it is indicated that the initial selenocentric velocity V_

is not changed greatly by the direction of launch. (c_i = _+ _/2)

At launch speeds near or greater than escape veloci_/ the entry angle

_2 does not change rapidly and is in the range below IO degrees.

At launch speeds greater than escape velocity an increase of

O. ! _n/sec in the launching velocity

0.4 km/sec in the entry velocity Ve2

vel ity

Vel results in an increase of about

and the initial selenocentric

ISI<
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The range of possible orbits within the Sphere of Influence is

indicated in the sketch (e)

L

The flight time required to reach the Sphere of Influence of the

Moc_ from an altitude of 200 kilometers above the Earth is shown in

Figure 3-19 as a function of the launch velocity increment (Vel - VeE).

(ref. 3-4) It can be seen that the effect of the launch elevation angle

(a) on the time is very small. The flight time to the Sphere of Influence

varies from about 5 d_vs near the minum_n velocity to about i d_y at

0.5 kilometer/second above escape velocity.

1 2<
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3.15 Tra4ectories to Strike the Moon

3.15.1 Types of Im_ct _r_ectories.- In any stud_ on lunar flight

the first trajectory one thinks of is an impact trajectory. Xmpact

trajectories can be divided into four classes (ref. _-_) as indicated

in sketch (f)
(_Ce > 0 _, <0

D

• 9_ . t°

- _X X eo

D

A-A  end,n9 Z)- Descendm 

(4:)
The trajectories can be classified as striklng the Moon on an

ascending arm A or a descending arm D; and as launched in the _Lirection

of the Moon's rotation (_ > 0) or opposite to the direction of the Moon's

rotation (_ < 0).

A typical impact trajectory of class A, (_ > O) is shown in Figure

5-20 in inertial xo - Yo axes and in Figure 3-21 in rotating x-y axes.

(Ref. 3-9)



In Figure 3-22 are shown the conditions at launch for impact with

the Moon calculated using the two body e_uatlons of SECTION 3.10. The

orientntion angle A between thc Earth-,_oon axis and the initial

launch radius ore p!ottcd against the launch velocity increment Vel - VeE

At a launch angle of = = 9O° (7 = 0°) the variation of the launch

orientation angle A is small and A _ .85 radian (48.7 degrees). For

a launch angle of _ = - x/2 which is opposite to the direction of

rotation of the Moon _ varies between i and - .5 radian for the speed

range shown.

The errors caused by using two-body equations for Figure 3-Z2 :_ere

found in reference 3-4 to amount to a distance error of 10-20 kilometers

at the Moon near the minimum initial velocity and decreasing to 1 kiAo::_i_-r

at launch speeds above escape velocity.

In Figure 3-23 (taken from reference 3-6) the launching conditions

for striking the Moon are shown for three orientation angles @L" The

orientation angle @L is defined by

154< -
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0L - A + 81 3.15-1

In Figure 3-22 the orbit orientation angle @i = O; therefore A " @L.

In Figure 3-23 the launch velocity Yl is plotted against the launch

elevation angle 7el at values of 8L = 45 °, 112.5 °, snd 180 ° for a

launch altitude of aboul 3_0 miles.

It can be seen from Figure 3-23 that a launch velocity greater than

34,800 ft/sec is needed to strike the Moon for a launch altitude of 350

miles. The escape velocity at this altitude is about 35,165 ft/sec.

From the propulsion stan_ point it would be desirable to select a

velocity as low as is practical, and from a guidance stand point we

would like to select a set of initial conditions in a region where the

necessary launch elevation angle does not vary considera_ ly .aith

velocity. Thus, from Figure 3-23 it is evident that the Launch speed

should be above the minimum speed and that, for this example 2 the launch

elevation angle 7 does not change appreciably above 35,000 ft/sec.

Therefore, in reference 3-6_ a speed of 35,000 ft/sec, a launch orientation

eL -^nangle = t_-, and a ia_ch ................ _ ,, .,,. _o ....

selected for the example trajectory.

The tlmesrequlred to reach the Moon for the conditions of Figure 3-23

are as follows:

VI, ft/sec t, days
V at Moon

3l_,800 _ _ 9,000 ft/sec

35,000 2.5 "

35,500 1.5 "

tS.S<.- -



3.15.2 Accuracy requirements for striking _)on.- The accuracy

requirements for lunar vehicles will depend on the type of guidance

with which the vehicle is equipped. If the vehicle is equipped with

both a launch guidance system and a terminal guidance system the

accuracy requirements will he different than a vehicle equipped with

_. o 1o,,,_ _,4_°_ =ystem. T,_ °A,_÷.4,-_ ÷.h_ ,_,_._y reou_e_ment,

will depend on the type of terminal guidance such as an infold scanner

or an optical scanner. In this section we shall consider the accuracy

requirements of a vehicle which has launching guidance only and follows

a free body trajectory to the Moon. In this case we can consider only

the errors in the initial launching velocity V I and launch elevation

angle 71.

In reference 3-6 the accuracy requirements to strike some point

on the Moon were calculated for the example selected and the results

are shown in Figures 3-24 and 3-25. In Figure 3-24 are shown the

limiting conditions for impacting on the Moon for the given set of initial

conditions. If the launch elevation an61e 7 were exact then the

velocity could vary by about + 45 ft/second. If the launch velocity wee6

exact then the launch angle could vary about + 0.3 degree. It may be

seen in Figure 3-24 that the accuracy conditions are not symmetrical,

however_ and that the tolerances are less in one direction than another.

The trajectories in the vicinity of the Moon corresponding to the limiting

conditions of Figure 3-24 are shown in Figure 3-25.

In reference 3-h approximate calculations were made of the accuracy

necessary to strike some point on the Moon, and the results of these

calculations are shown in Figure 3-26 for a launching altitude of

-
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200 kilometers. The maximum errors in launch conditions are showz, as

a function of^the initial velocity to the escape velocity (VI/VE).

From this figure it is indicated that the optimum condltion is near the

escape velocity. At this point errors of about 180 ft/sec in velocity

and about O. 3 degree in angle can he tolerated. At speeds above and

below the escape velocity the allowable error in velocity decreases.

Although the allowable error in launch elevation angle increases rapidly

below escape ve!ocity_ the allowable error in launch velocity decreases

rapidly nullifying the beneficial effect for launch angle.

In Figure 3-27 trajectories are shown (ref. 3v_) for an initial

velocity close to the minimum necessary to reach the moon. In this

case the allowable error in initial velocity is a minimum. For the

exact initial conditions impact occurs_ but for velocity errors of

2 meters per second (6._ ft/sec) the vehicle misses the Moon.

In reference 3-_ it was found that errors in the initial radius of

.+50 km (31 miles) were negligible. The maxisn_n permissible error in

the orientation angle R was about i degree which means rou_xly that

the time of launch as a free bod_ must he controlled within several

minutes.

The effect of errors in the plane of the launch was investigated

in reference 3-4 and it was found that an impact on .the Moon would occur

if the vehicle were launched within 50 km (31 miles) of the plane and

with the velocity in the z direction less than 50 meters/second (16_

 /sec).

1=7<
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The errors indicated above are for striking the Moon on the

ascending arm of the trajectory. The accuracies must be 2-5 times

greater to strike the Moon on the descending arm. In _idition it was

found that the effect of the Sun does not appreciably changethe accuracies

stated above.

1:i,.8<
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3.16 Circum-Ixmar Trajectories

3.16.1 Tra_ectorie, with return to earth.- The next lunar

trajectory of inte.rest is the orbit which circles the Moon and then

returns to the vicinity of the Earth. Trajectories of this type may

be useful for study of the back side of the M_x)n. There-are four types

of circum-lunar trajectories which are indicated in the sketch belov.

oC, >0 OC, < 0

S ,% I

a
D D

A - Ascendln_

C rcurn/ una r

D _
D

The trajectories can be classified as to the direction of launch:

in the direction of rotation of Moon , = > O, or opposite to the direction

of rotation, = < O. In addition the trajectories can be further classified

as to the type of approach to and exit from the line Joining the moon to
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the Earth as indicated in the sketch for the rotating x-y axis system.

The letter A refers to the ascending arm of the trajectory before

apogee is reached and the letter D refers to the descending arm after

apogee is reached. The upper letter in the sketch refers to the type of

trajectory before crossing the line Joining the Moon to the Earth, and

the lower letter refers to the type of trajectory after crossing this line.

A typical circum-lunar trajectory from reference 3-9 is shown in

A
Figure 3-28. This trajectory is of the type _ > O, A. In this type of

trajectory the vehicle will either return to hit the Earth or it may miss

the Earth and establish an elliptic orbit about the Earth. The llfe time

of such elliptical orbits would, of course, depend on the initial conditions.

In reference 3-9 it was determined that the accuracy requirement for this

type of trajectory is the least stringent of any lunar trajectory; the

allowable error in initial velocity is i_0 ft/sec and the allowable error

in elevation angle is i0 degrees. It was found t howevert that the time

of the vehicle's return to Earth could vary as much as 20 days. In addition

the distance of the closest approach to the Moon will vary by about

80,000 miles. Therefore, if the purpose of the vehicle were to photograph

the far side of the Moon and recover an instrument package on the Earth

the tolerances would be greatly reduced. In reference 3-9 it was found

that for an uncertainty of I000 miles in location of the Earth reentry

point the i_Itial velocity would have to be within 0.29 ft/sec and the

initial elevation angle would have to be within 0.03 degree.
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In reference 3-4 trajectories were calculated which would come

within 80OOmiles of the center of the Moon. The results in this case

for combinations of errors in V and 7 are as follows:

AV, ft/sec AT, deg.

- 3 0.6

+ 33 6

- 33 6

Remarks

return to Earth

return to Earth

collide with Moon

or do not circle

moon

The accuracy requirements diminish rapidly with an increase in the

distance that the vehicle comes from the Moon.

3.16.2 Trajectories with return to Earth with a _raki_ ellipse.-

If now, we wished to have a vehicle circle the Moon and then return to

Earth in a reentry orbit the accuracy requirements would be very stringent.

In this case the results of reference 3-5 indicate an accuracy of 1 ft/sec

in the inltla] ve_!ocity ._a n _I a_es _ _ _-_*-_ .....

obtain an elliptic reentry orbit about the Earth with an uncertainty of

50,000 ft in perigee altitude. An example of such a trajectory is shown

in Figure 3-29.

In reference 3-_ it was found that errors in initial velocity as

small as 0.7 ft/sec and angle errors of 0.3 degree produced errors in

altitude for reentry of 525,000 feet and 625,000 feet, respectively.

Therefore, it is evident that a reentry orbit would be very difficult

to obtain without corrections in the flight path.
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3.17 Allunar Trajectories

The next type of lunar trajectories is the allunar tra,Jectory;

the_e pa_ in front of the Moon but do not pass behind the Moon. The

four typos of _l].unar trajectories are indicated below (ref. 3-_)-

oC,_O

D

D

A-Ascendl--

Allu  r

_| -.

A
A

I 9co

Again the trajectories are classified as the clrcum-lunar trajectories

except in this case it is possible to approach the Moon-Earth line on a

descending trajectory and exit on an ascending trajectory. This occurs

when the attraction of the Moon causes the vehicle to reverse its descending

trajectory as indicated in the sketch.
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3.18 Periodic Trajectories

One of the interesting problems of lunar trajectories is the

possibility of establishing a periodic orbit about the Earth and the

Moon. Considerable work has been done on this problem, some of which

is reported in reference 3-_.

3.18.1 Periodic circum-lunar trajectories.- The most interesting

periodic orbit would be one which would circle both the Moon and the Earth.

J
There exist such orbits which appear somewhat llke the sketch above.

In reference 3-_ several periodic circumlunar orbits were calculated

and some characteristics of these are listed in the following table:
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re, ml rm, ml VI, ft/sec

i. 4,o8_ 93 36,5o_

2. 26,229 915 14,441

5. 91,475 952 10,446

4. 72,525 1,245 8,999

It may be seen that the only orbit which would not strike the Moon

is number 4, and for this orbit the minimum radius from the Earth is over

72,000 miles or almost 20 Earth radii. Such an orbit would probably be

of little use. In addition this type of orbit is unstable and perturbations

would cause it to diverge. Therefore, there seems to be little possibility

of establishing a circumlunar periodic orbit about the Earth and Moon.

3.18.2 Periodic allunar trajectories.- Although there appears to be

only one family of circtunlunar trajectories there are an unlimited number

of allunar trajectories possible. There has been considerable mathematical

treatment of such trajectories which are referred to in reference 3-4.

Several allunar trajectories computed in reference 5-4 are shown in

Figure 3-30. The periods of the trajectories shown vary from about 0.9

to 1.9 months. Although such orbits are of interest it is doubtful that

such orbits could be established for avery long period due to perturbations

of the orbit.

144<
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3.19 Establishing an Artificial Satellite of the Moon

In a previous section it was indicated that the Moon could not

"capture" a vehicle because the entry selenocentric velocity was greater

than the escape velocity. Therefore in order to establish a satellite

of the Moon it is necessary to decrease the selenocentric velocity below

the escape velocity with a retrograde rocket. In order for the satellite

to stay _n orbit about the Moon indeflnitely it would be necessary for

the velocity to be reduced considerably so that the vehicle would not

leave the Sphere of Influence.

The maximum velocity for the vehicle to remain in the vicinity of the

Moon can be obtained from Jacobi's Integral for C = C2 (see section 3._

and Figure 3-3). In reference 3-8 a study of lunar satellite orbits was

made and the maximum velocities were calculated. The maximum allowable

velocity in selenocentric coordinates is shown plotted against altitude

above the Moon's surface in Figure 3-31. Besides the danger of recapture

by the Earth there is also the possibility of impacting on the Moon.

corresponding to lunar impact using two body equations (see SECTION I)

and these minimum velocities are also plotted in Figue 3-31. Thus for

establishing a lunar satellite the selenocentric velocities must be

kept approximately between the limits shown in Figure 3-31. In reference

3-8 it was found that velocities slightly in excess of the maximum could

be used for retrograde orbits but that velocities slightly below this

maximum would have to be used for direct (in the direction of the Moon's

rotation) orbits.

145<
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A t_pical approach trajectory from the Earth is shown in Figure 5-32,

and in Figure 3-33 circular lunar sate21ite orbits are shown as they

would appear In Xo, Yo inertial axes. (Reference 3-8). In Figure 3-32

a satellite orbit about the Moon is shown in rotating x, y coordinateg.

In Figure 3-39 an orbit is shown in which the initial selenocentric

velocity was above the maximum allowable velocity and the vehicle is

recaptured by the Earth. A near circular satellite orbit at a distance

of 20,000 miles from the Moon is shown in Figure 3-36 (ref. 3_8).

In Figure 3-_ it is evident that the two body approach (SECTION 3.13)

could not be used for many orbits of the lunar satellite since the

perturbations become more noticeable after several orbital revolutions.

The disturbing force of the Earth is about 70 percent of the attraction

of the Moon near the Sphere of Influence. Therefore, for more than one

or two revolutions about the Moon the three body equations must be ussd.

In reference 3-8 a typical satellite orbit about the Moon was computed

and the allowable errors in launching conditions were computed. This

satellite orbit is shown in Figure 3-37. The vehicle was launched as

indicated below and a satellite orbit was established at 1,O00 miles from

the surface of the Moon.

E

__ _ . /,_. 2,.'

V,:

146<
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The entry selenocentric velocity at the point where the retrograde rocket

was assumed to be fired was 7707 ft/sec. For a 1,000 mile dlstamce the

velocity must be below 5,338 ft/sec. The minimum allowable velocity was

3,280 ft/sec. _ereforethe value _309 ft/sec was selected for the

satellite orbit. This requires a velocity increment of about 3,400 ft/sec

from the retrograde rocket. (For other satellite orbits velocity reductioms

of 2000 to 6000 ft/sec are require_.)

The allowable errors in initial velocity Vel an_ launch elevation

angle 7eI to establish this orbit were

- 33 < ZX Vel < 77 ft/sec

- .3 < A 7el < .135 degree

In addition it was found that an error in the retrograde velocity increment

of a few percent would not significantly affect the allowable errors in

velocity and direction _iven above:.

For the particular satellite orbit computed in reference 3-8, the

_ _ • _J. _ w_.s_.., a-awaa v _A J.'_o t.*,,v ¢:kul../t,,L_, "9 LI%)tAJ.'i::J l Iwllr" _ --r'm_re Ol

errors indi cared above.

The above values are representative for retrograde satellite orbits;

for direct orbits the allowable errors in velocity are about ome half of

those i_licated above, whereas the allowable errors in launch elevation

angle are approximately the same as for the retrograde satellite orbit.

If we desired that the initial satellite orbit be established within

I00 miles of the desired altitude of I000 miles, then accor_img to

reference 5-9 it was found that the initial velocity from the Earth must
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be established within 4 ft/sec and the initial launch angle must be

within 0.09. degree.

In the above discussion we have tacitly assumed that th_ retrograde

rccket can be fired at the right time and in the right direction. The

direction of flrlng m_ght be controlled by spin stabilizing the rocket

in the correct attitude immediately after the powered portion of the

approach trajectory. The timing of the retrograde rocket firing, however,

might prove to be the most difficult problem. Xn reference 3-8 it is

indicated that the use of a clock to time the firing of the retrograde

rocket might be impractical because of the fairly wide range of times

of arrival near the Moon. Other sources, however, have indicated that

such a timing device might be satisfactory.

1, 8<
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3.20 Use of the Moon for Accelerating Space Vehicles

There has been considerable interest in using the Moon as a means

for accelerating a space vehicle for interplanetary travel. Since the

Moon revolves about the Earth near the plane of other planetary orbits,

at some time during each month the _ vould be in a position to

accelerate a vehicle tovard a_ planet. The use of the Moon for accelerating

space vehicles waF considered in reference 3-_.

There are four types of maximum acceleration trajectories as

indicated below

GIC o >0 I

A

_M |_" _*"

D

C£,_ 0

,g' _eo

_ _ _ _ x _ _eo

-_ Xe.

0

A - Ascen&n_ D- De_.cJ,.g

Luf_cer ¢tccelero#'/_ froj¢c_'orles

These four types are analogous to those for striking the Moon

(see SECTION 3.15.1). In order to obtain the greatest acceleration the

I .9<
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vehicle should pass very close to the surface of the Moon and pass

out of the Sphere of Influence of the Moon in a direction as close as

possible to the direction of the Moon's velocity about the Earth.

Thus, the trajectory for maximum acceleration (_ V = Ve 3 - Ve 2)

passes around thm Moon in a counter-clockwise direction for approach

on an ascending arm and in a clockwise direction for descending arms

as indicated in the sketch. The exit velocity Ve3 is always greater

than escape velocity and almost independent of initial velocity Vel;

however, the acceleration increment (& V = Ve 3 - Ve2) depends on the

Initial velocity V1 and is greatest near the minimum velocity V1

necessary to reach the Moon and decreases as the initial velocity V1

is increased. The maximum velocity increment near the minimum velocity

is

V = Ve3 - Ve2 - 4920 ft/sec

The maximum velocity increment g_ven above is for the turn around

the Moon to be at the radius of the Moon. Because of the possibility of

collidJng with the Moon the trajectory must be raised from the surface

of the Moon, thus reducing the gain in velocity. In reference 3-4 it

is shown, for one example, that an error of 328 ft/sec would cause an

error in radius at the Moon of 7_ miles. An error in launch elevation

angle of 1 degree would cause an error in radius of 62 miles.

In addition to ualng the Moon to accelerate a space vehicle it

could be used to decelerate a space vehicle. The maximum deceleration

would be obtained by passing out of the Sphere of Ynfluence in a direction

opposite to the Moon's rotation.

ISO -
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The practicality of using the Moon to accelerate a space vehicle

depends on whether it costs mare in weight for the additional guidance

accuracy so that the vehicle could come close enough to the Moon to

benefit from it or whether the extra weight could be put more efficiently

into a larger power plant.

tS1 <
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3.21 Propulsion Requirements for Lunar Vehicles

A discussion of Lunar trajectories would not be complete without

an indication of the propulsion requirements for such orbits. In Figure

3-38 the velocity increments obtainable from several types of propulsion

systems are shown as a function of the ratio of initial weight to pay-

load weight. It will be noted that the range of chemical propulsion

shown indicates a considerably more efficient system than that used with

Vanguard type satellites. The number of rocket steps used also increases

as each curve increases, starting with 2 steps at the lowest velocity

increments and increasing to 5 steps at the highest velocity increments

shown in Figure 3-38. The approximate velocity increments necessary to

perform various lunar orbits are indicated below:

Trajectory

i. Moon Impact

2. Circumlunar

3. Circumlunar with return to

satellite orbit at Earth

4. Lunar satellite

5. Land/n6 on Moon

Total A V, ft/sec

39,000

39,000

_7,00o

38, o00

41,000

The additional velocities for trajectories 3, 4, and _ reflect the use

of rockets in entering the satellite orbits or landln6 on Moon.

IS <
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TABLE 5-i

AXES TRANSFORMATIONS USE_;L IN THREE BODY PROBLEM

(Based on D = i)

con _t - sin _t O"

[A]=Isin_t cos _t 0
L J I

I 0 0 1
t

YO = A

z

Yo Yo = Y

zo

o[A]+
tZo]

Ye = A

z
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Xeo =, x 0 - x 1

Ye o = Yo

Zeo = Z 0

o -- Xo

= Yo

Zeo = Zo

Xm = X 0 - x 2 COS o_t

Ym = Yo - x2 sin _t

zm = z0

x== xe - cos _t

Ym = Ye " sin _t

Zm= ze

xe = Xo - Xl cos _t

Ye = Yo " Xl sin _t

Z e = Z0

156<
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_ = _. + _ sin _t

Ym ffiYe " m cos mt

_= _e

Xm = x o + _ x2 sin _t

Ym = Yo " _ x2 cos _t
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SECTION IV

ORBITAT TRANSFER

Because present interest is on the transfer from an existing orbit

into a re-entry orbit, the equations to follow are directed toward the

re-entry transfer problem. The first concern is given to the apogee kick

transfer into the re-entry orbit and then the problem of a kick at any

arbitrary point in an orbit is considered. Even though the equations are

directe_ toward the re-entry problem they may be adapted to a variety of

other non entry problems.

4.1 Apogee Kick Transfer

If it is assumed that we have a vehicle in sn orbit entirely outside

the main atmoschere, one of the simplest and more effective ways to cause

the vehicle to enter the atmosphere is by firing a retarding rocket at

the apogee. The equations which pertain to an apogee kick re-entry are

_erived as follows:

The following three equations were obtained from equations (1.2-17),

(1.3-8), (1.4-2), and (1.I_-3) of SECTION I.

(h.l-1)

(4.1-2)

VpS- (4.1-3)
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Thus from equation (h.l-2)

v-= -_o_- _)_-
and combinin_ equation (h.l-l) and (h.l-h)

/vo-Cl/v.._.e

which m_y be r_c,:ced tc

m

O

Other combinations of equations (h.l-l), (h.l-2), and (h.l-3) yield:

_oeV

(h.l-h)

(!_.1-5)

(h._-6)

(4.1-7)

= /l+e (_.1-8)

• _ and and afterIf the original conditions at the apogee are Vao rao

the retarding rockets are fired a change in velocity (AV) is effectively

instantaneously added, the new conditions at the apogee are now Val and

- + The eccentricity, radius of
ral where Val (Vao AV) and ral - rao.

the perigee and velocity at the perigee ate given by



4-3

CI _,)

v,-vo,(j+-

(4.l-9)

(4.1-io)

(4.1-11)

Also the new semi major axis is established as

_ ,0,= Z. "Z /+6,
(4.1-12)

m (4.1-13)

The equation of the new ellipse is

r-= _' ("- '_')
I +E co_ 0

where _. is defined by _q_:_tion (4,.1-9)
J.

Now that the new orbit has been established, it is desired to know

where the vehicle will enter the atmosphere and what will be the re-entry

angle, that is, the angle between the flight path and the horizon at the

point of re-entry. It is assumed that AV is sufficiently large to cause

the re-entry. The upper limit of the atmosphere is considered at r e

which is usually taken to be somewhere about 50 - 70 miles. The re-entry

will occur at the angle 0 where the radius r of the ellipse is equal to

re . From equation (4.1-14)

i<S< --

(4.1-14)
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r,O E,)
(4.1-15)

Solving for cos 8e

/"t' _coj _e:
r

(h.i-16)

(h.1-17)

and the re-entry position ee is given by

CO

u.

(h.l-18)

The re-entry angle is defined as the angle between a line perpendicular

to r at ee and the tangent to the orbit at this point. The general

equation for this angle at all values of 8 was given in SECTION I as

equation (1.5-8).

tan 7 = /+ E cose (h.l-19)

Thus the re-entry angle 7e at 8e is given by

/+ 6, co-_ 8 e

(4.1-2o)

For counterclockwise vehicle motion, tan 7 " + indicates an exit, tan 7 " -

indicates an entry. The velocity at re-entry is given from equation (1.6-2)

of SECTION I as

159<
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The various equations are adaptable to the following problems.

Problem Number I: It is desired to make the vehicle re-enter at a certain

_e and re .

The valuesof 8e and re are subsituted in equation (4.1-17)

(a)

Solvin_ for el:

(b)

r",, n_ _/e, co..,e,...= V_ F_e,

= _/c.-/ _
_ _-o_e_-_

Thus the eccentricity required to effect the re-entry at ee, re

(c)

(d)

is defined.

The velocity at the apogee, Val , required to give this eccentricity

is derived in the following equations:

From equation (4.1-9)

(e)
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Solving for Va yields:

V" = (/- _)_"R=,,
Q r_

rd-_

, -V r-, tr_,,-.,& +r./

(f)

(g)

This equation defines the velocity required at apogee to give re-entry

at ee and re.

Thus

Av= v. - v0
0

Co_ ..f. r

(h)

(i)

Thus the AV required at apogee ra to give re-entry at ee, re is

defined. The re-entry angle at 7e is given by

•-,f,¢= .t..an-I E, 5,_ e,.,
/+E, cos _£e.

(J)

2,01<
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The velocity at re-entry is given by equation (h.l-21). A sol1:tion of a

tzr_ical problem of this type is given in figure h-l.

Problem Number II: It is desired to make the vehicle re-enter at a certain

•entry angle 7e and r e .

Substitution of r e into the general equation of the orbit:

r_ (/__.)re=
/+E-, co,s _

(a)

Solvin_ for el:

r-_ +_,_ cos @_= r,.- C e, (b)

(c)

Thus the eccentricity required to effect the re-entry at any

is defined in (d). The interest is, however, in a particular

will give the re-entry angle 7e"

From equation (h.l-20)

Z+_ cos@ =
, e. _c,,_ "r_

II

ee, re

ee which

(d)

(e)

_, co_0- _, s,,_o_

/
,sin @e

(f)

(g)

E _, ,-_.. .
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This defines the required eccentricity in terms of @e and 7e"

Equating the two equations for the required eccentricity gives

i
(h)

(i)

b11t

co._ 6] - -/l-.s,_"

sc that

(J)

Squaring both sides, letting

A 1 (k)

(z)

or

zA_ 5,,, _ = - CA'-+_ "9s,,.,"_. (m)

203<
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From which

(n)

(o)

where A is defined by equation (k).

This defines the ee where the re-entry is to occur. Thus, the

eccentricity of the re-entry ellipse is given by

El=
re cosE) + Fa

The velocity required at apogee Val to obtain the required 7e

and r e at re-entry is given by

when equation (p) is substituted for _i, equaticn (q) becomes

and thus the increment cf velocity required at apogee to give re-entry at

the prescribed 7m and rm is given by

.

(p)

(q)

(r)

(s)
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where ee is defined by equation (o). The velocity at re-entry is given by

equation (4.1-21). A solution to a problem of this type is given in figure

h-2.

_.2 Use of A Kick At A Point In The Orbit Other Than Apogee

The use of the kick at a point other than apogee is directed toward the

problem of re-entry at a specified angular position 8e, altitude re, and

re-entry angle 7e. These arbitrary re-entry conditions cannot be obtained

by a kick at apogee. The basic equations given in Section h.l may be

adapted to this type of problem.

Problem Number III: It is required to re-enter at a certain @e, re, and

One solution to this problem is to use the solution given in Section h.1

to determine a re-entry orbit which will give the proper entry angle 7e

at re and then to rotate the major axis of the orbit to give the proper

entry position ee. Thus a re-entry orbit is obtained which satisfies the

re-entry requirements. The £ransfer into this re-entry orbit is made where

the orbit of the vehicle intersects the re-entry orbit.

The equation of the orbit which gives the proper entry angle 7e at

re is given by

r=,r,(/-e,)
I+ E, cos e

and the equation of the orbit of the vehicle is given by

r= Co (I-e.)
i

I+ 6 co, 0
@

(a)

(b)

20S<
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The ellipse of equation (a) which gives the proper entry angle 7e

re is rotated counterclockwise through an angle A8 to give the proper

entry position 8e so that the equation of the re-entry orbit becomes

r--
I-/- _, co5 (_- a e)

at

(c)

The points of intersection of the vehicle's orbit (equation (b)) and the

re-entry orbit (equation (c)) where the transfer may be made are found by

equatin_ the equations for the two orbit equations.

Thus,

_, (/- &,)
I+ 6, cos (@ -zX @)

= r.. O- 6.) (d)
/+ E' o co_ 8

Solving for the O's of the intersections.

Inverting equation (d)

f
r',,°(/-

Expandin_ equation (e)

] + E, <o.+(++_+e)= ; + +° ,:o.,,+
_, (/-,_=,) r+,0--+,) &(]-+:o) _o_/-¢o,)

Let

/ -- / = A
r+,(1- +,) _o¢"/- +.)

Substitutin_ a trignometric ident{ty for cos (@ - 48) and collecting in

equation (f)

(e)

(f)

2C6<
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_a

0-_ )%

Coilectinc in equation (i)

,4+ _7T-__ _o( ) cosO= - ,(,__ sin 0 (_

_et : And also let

Substituting equation (j) into equation (i) yields

A + B co5 (_ =C _,,_

(J)

(k)

And squaring

A_+ 2Aa_o_ 0 +Bh-,,_'O = C_(/- _o,'e) (z)

Collectin_ in equation (Y) yields:

(A_-c_)÷ 2_ s _o__ + Cs'÷CO_o, "_ = o

L_: _ = (,4_c9 ,¢'_= 2 AB

where A B and C are defined in equations (g) and (J).

then:

(m)

(n)

207<
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The solution for the @i of the intersections is thus:

8_ = <o_-I(-_-*<_ "- _ _,_

where El)K2_and K3 are defined in equation (m).

The redli at the intersections are

(o)

_o(/- ,.)_.-- _ (p)

The velocities of ihe two paths at the intersection points are given by

2.

(q)

(r)

The a::vle between the velocity vectors is given by

nY--*T *-
0 +E,,_o,ed - to / _ ) (s)

-r.... e,, x-J _.s uV w consideration of a problem

sketch. Thus the velocity vector diagram is established by VI, Vo, and

&_.

The AV required to transfer from one ellipse to another may be found

grom the cosine law

A V " = (V,)"+.(V,,) _- Z v, V,, _o, (nr) (t)

,:.CS<



h-lh

and the ankle D between AV and Vo is
f

-i I ))2- ( av(V,
Thus the velocity increment required for the transfer and the angle

of applicstion is defined. A solution to a problem of this type is _iven

in fiFure h-3.

Problem Number IV:

a certain Be, re,

As in the above problem it is required to re-enter at

and 7e. The solution to follow is more general than

the one _iven above. Consider the following sketch:

(u)

Point (I) is an arbitrarily specified point on the original orbit of a

vehicle. It is desired to determine the maenitude and direction of the

velocity impulse required at point (i) which would cause the vehicle to go

into a re-entry orbit and enter at a specified point (2) with re-entry

angle _e" Thus re, rl, As, and Te are known. The first step is to

determine the velocity and direction of velocity required in the re-entry

orbit at point (I) to _ive the desired entry at point (2). Then by simple

vector subtraction, the velocity impulse required at (i) in arder to cause

2C9<
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the vehicle to leave its normal orbit and go into the re-entry orbit

will be determined. The eccentricity and radius at apogee of the re-entry

orbit are given by

(.)

(I- _)
(b)

r,Ei+ E<<>.,(_ +,__J_7
_1- EJ

Equating equation (b) to equation (c) and then proceeding to solve for the

unknown ee

(c)

(d)

thus

_+_ (e)

Collecting

(f)

,Eubstituting e from equation (a) in equation (f)

_..l_O <

(g)
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Tri_nometric identity:

thus substitutin_ equation (h) into equation (g)

tT r'_
(i)

Collecting in equation (i)

and thus

let

Thus equation (k) becomes

A CO.S O_ 4- _ ,sln _e = 0 (,.)

Zll <
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From which

A _ B _,., g_ = o (n)

or

(o)

where A and B are defined in equation ($).

Equation (o) determines the angle 8e between the radius re and

the major axis of the re-entry orbit. Thus the angle @e is defined in

terms of the knowns.

Using the known ge, the eccentricity is found from

Using the known ge, re, and z the semimaJor axis is given by

_,= (,/_ (...)

specified re-entry conditions is given b_

VI= -+ og a,

Using the known A@, ge, and s, the angle 7 at rI is given by

.+_--I _ s/,, (@_ + _ g),
Y t.C,l ¥l

1V- _ _o.s C_e + _ @)

(p)

(q)

(r)

(s)

¢-" '_ ¢'% ,e"



4-18

The equation of the re-entry orbit is given by

e')
-

l-t-E @

The velocity and direction of the velocity in the re-entry orbit at

point (1) are established by equations (r) and (s). The velocity and

direction of velocity of the original orbit at point (1) are given by

equation (q) of Problem Number IIIand equation (4.1-19). The procedure

for obtaining the required velocity impulse for transfer and its direction

may be obtained by use of equations (s) and (t) of the foregoing Problem

Number III. The velocity at re-entry may be obtained by means of equation

(4.1-21). A solution to • problem of this type is given in figure 4-4.

Consideration up to now has been on the transfer from an existing

orbit into a re-entry orbit. The adaptations of the equations to other

types of transfers in non-entry considerations and the treatment of minimum

energy transfers are left for later considerations.

(t)

213<
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SECTION V

RE-ENTRY WITH TWO DEGREES OF FREEDOM

@ Introduction.

In the previous SECTION the procedures for deter-

mining the position, angle and velocity at re-entry were

established. Once these quantities have been established,

the complexity of the solution for the paths, velocities,

and decelerations in the atmosphere depends on the complete-

ness of the differential ecuation used. The equations dis-

cussed here will be of the simplest nature. The vehicle is

to experience lift, drag, gravitational and linear inertia

forces only. Even the solution of the simple equations

depen_on machine integration of the ecuations. However,

there are some further restrictions concerning lift, drag,

and air density that can be placed on these simpler equations

and some strictly analytical results may be obtained.

There are various paths that may be taken through the

atmosphere. It has been proposed from a heatin_ standpoint

to use a skip trajectory where a plunge is made, the vehicle

heats up, returns to altitude where radistion occurs and

cools down for another plunge. The main problem for any

path is to slow the vehicle down without excessive heating

on decelerations. It has also been shown that another some-

° ., _<
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what favorable heat path is a plunge to say 200 -

250,000 feet where pressure drag is of a fair magnitude

and to remain at that altitude until appreciable slow

down occurs. The continuous high drag glide path has

favorable deceleration aspects, but it is fairly un-

favorable from a heating consideration. Only the

skip and glide paths will be discussed and then in a

somewhat limited manner.
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SYMBOLS

reference area for lift and drag evaluation,

sq. ft.

drag coefficient

lift coefficient

drag, lb.

2
acceleration due tc gravity, ft/sec.

mass slugs

distance from center of Earth, ft.

radius of curvature or flight path, ft.

radius of Earth, ft.

distance along flight path, ft.

surface area, sc. ft.

time, sec.

velocity, ft/sec.

velocity divided by satellite velocity at
Earth's surface

velocity of satellite at Earth's surface

weight, lb.

coordinate of fixed axis system

range coordinate

vertical distance from surface of Earth, ft.

coordinate of fixed axes system

constant in density altitude relation

angle of flight path to horizon, radians



@

P

angle between X axis and V

air density slugs/ft. _

angle between Z axis and r

also remaining range ( F- _ )

radians

(Section h.l);

(Section h.3).

Subscripts :

b

en

ex

body axis

conditions at entrance to Larth's

atmosphere

conditions at exit from Earth's

atmosphere

22.1<
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S.I Development of Re-entry Equations Involving Lift, Drag,
Linear Inertia and Gravitational Forces.

The coordinate system showing the convention of axes

and angles is shown in figure (5-1a) and an exploded view

of the free body is shown in figure (5-1b). The equations

of motion are derived (see reference 5-i) as follows:

Taking a summation of the forces in the X direction:

but

_)_ = V co.s e

_m.d the rate of change of velocity in the X

d V = _o5 o - e V 5,_ 0
X

direction is:

and thus:

/ _jn @-_
-- f'2

( V:o_ o -V6._,,-, O)
(5.1-I)

Similarly summing the forces in the Z direction;

(5.1-2)

These two ecuations are the re-entry equations of

motion where only lift, drag, linear inertia, and gravita-

tional forces are involved. The equations are transferred

2.,22<
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from the X Z axes to the body XbZ b axes, thus pro-

vidin F for easier handling of the aerodynamic forces.

The transfer of axes involves a simple rotation of axes

by means of the trigometric formulas for axes rotation.

(5.1-3)

(_. i-L_)

If we substitute FX and F z from equstions (5.1-1) and

(5.1-2) into equations (5.1-3) and 5.l-k) and cancel llke

terms and collect,

¢o y= VG

(5.i-5)

(5.1-6)

Thus, substituting the expressions for llft and drag weight

zWV V

(5.1-7)

(5.i-8)

Also from figure (5-1)

(5.i-9)



_ = Vcos'Y
r

= V _;_ 7-

(5.1-Io)

(5.i-ii)

(5•1-12)

Equations (5.1-7) through (5.1-12) provide the equations

necessary for re-entry calculations _here only lift, inertia,

gravitational, and drag forces are involved.

The procedure for one means of solution, that is a

step by step or digital integration of the e_uations is

somewhat llke this• We put the initial conditions

Vo' $'o' _o' Po' to' CDo' CLo' in the equations and obtain

• _ "_, "_, _, r, , _, _a _' which when multiplied by the

increment of time At gives _i, Vl, hi, rl, _/i, Xl, and

I.T .... .I.

"I" .= _ these qua_;tities back into _he equation with

the appropriate CD, CL, and p and the process starts all

over again to get the various quantities at time 2. It

must be remembered that CL and CD are functions of Mach

number and type of flow which must be known for the body be-

fore any computations can be made. Either CL or _ may

be programmed into the computations. If there is no llft

on the vehicle, the lift term is simply dropped. It might

• -> 4%"
_,,,,,,A,"I "< _ .-,. , . .
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be mentioned that there are various error reducing pro-

cedures that could be used but which would complicate this

simple integration technique.

The above equations may be adapted to various problems.

Various lift time histories, drag time histories, path angle

histories may be programmed into the computations. For the

skip and glide path some results may be obtained, with some

further restrictions by solely analytical means.

The Skip Re-entry.

In the skip re-entry the vehicle enters the atmosphere,

negotiates a turn and is ejecte0 into a ballistic path.

The equations of motion involving the forces perpen-

dicular and parallel to the flight path are respectively

(see reference 5-2).

C i....._V L m V 2"

7'_

(5.2-1)

(5.2-2)

We can recognize these as equations (5.1-5) and (5.1-6)

previously derived, but using the s_jmbol[sm of figure (5-3).

In the top equation we have the lift term, the weight term,

and the centrifugal force due to the path curvature. In

the bottom equation we have the drag term, the weight term,

and the longitudinal acceleration term.
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If in the re-entry turn the effects of gravity are

assumed small as compared to other inertia and aerodynamic

forces (gravity effects on the downward path are also some-

what cancelled by gravity effects on the upward path), then

the two force equations become:

dV
_- (5.2-I_)
dt

t _A-zCpfV =

The atmospheric density is assumed to be given by

Also from figure 5-3 it can be seen that,

--- --,.Sl'#'i'_"

Putting these quantities in equation (5-15)

the V 2 and ds go out and

C_fo A e-#_d_ = 5,_

_nlch can be integrated to give

Y d _ (5.2-6)

= cos "_ - co_ Y
Cn (5.2-7)

where p is taken as 0 at the effective outer limits of

the atzosphere.

• ..
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Equation (F) shows that the magnitude of the angle

in the skip path is a single valued function of y, that

is, it has only one ma_nltude at any particular altitude

in all portions of the skip.

Thus if the vehicle returns to the outer atmosphere

after each skip Ten = " _/ex for all skips.

Dividing equation (5.2-3) by equation (5.2-h) we get

or

_6Y
L _ V _-_
D - aV

at

V.4T_ L aV
as--5- at

(_.2-3)

(5.2-9)

But

and thus

d V / ,:IV L

'- r
I av"=+ V _-_Tas _

D

Multiplying by ds and integrating for L/D = c

V L = d7

V = Ven_
-">/-b

(5.2-10)

(5.2-11)

This defines the velocity in a skip. The _ at various

positions in the skip !s defined by equation (5-19). Thus,

Z27<
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the velocity, altitude and

L/D = constant.any skip are defined for

Since

at various positions in

of

= e
Ven

(5.2-12)

This defines the velocity loss in every skip in terms

L/D since _enl = _en2 = _enh "

Now we are interested in the combined effect of a

series of skips. It has been shown elsewhere that the range

_, of one ballistic phase is given by

(5.2-13)

where V s is satellite velocity at the Earth's surface.

It is assumed that the skipping process may be approxi-

mated by impact problem considerations where the total range

is the sum of the ballistic trajectories.

)

Thus
n

(5.2-i£)
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Glide Re-entry.

The equations of motion (see reference 5-2) are

as before :

C"
G.

(5.3-1)

The angles are assumed small in the glide so that

sin _ _ ; cos _ _ i and the atmosphere is com-

paratively thin so that r

ro _ i.

It may be noted that

dV .i dV'-
"_-- z as

and from figure h it may be seen that

---'q_-- d s

d __ co_ e
as 7"

I

Thus equations (5.3-1) and (5.3-2) may be written as

/_=-_ V _d-_-K_+ r_
ds

mV"
-- ---- (5.3-3)

ro

D __

I dV"

Z2 9<
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Dividing equation (5.3-3) by equation (5.3-_) yields:

( $.3-5)

It can be shown that the terms

may be neglected. The proof of this

ed here. (See reference 5-2)

So

Since

ZV _
-_- -}-- ZL-_ = 0
C5 -5

equation (5.3-6) can be integrated for constant

give the velocity in non-dimensional form as

[ /, I

L/D gg' and V 2 dZ

ds

will not be consider-

(5.3-6)

L/D to

whe re V o

(5.3-7)

is the initial velocity divided by the satellite

velocity at Earth's surface. V is ratio of velocity to

satellite velocity at Earth's surface.

Thus the velocity in the glide path is defined in terms

of the lift drag ratio and the range.

ZCO<., ::.
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From the original normal force equation

COS

L- ,.__. co5 _' =

_ 1 _ re _ ro ,

)9_ V"

and divldin_ by

we get

Or

If the quantity for the llft is put in, there results

(5.3-9)

[ 1-- I.V*=
(5.3-1o)

Thus the vel_clty is expressed in terms of the density and

thus indirectly in terms of the altitude. Using the

expression for density vs. altitude, velocity vs. density

(5.3-10) and velocity vs. range (_.3-7) the flight path is

defined.

The foregoing equations on the skip and _llde re-entry

were obtained from hypersonic glider re-entry considerations.

The velocity of the hypersonic glider may approach orbital

Z&i<
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velocity. Recently reference 3 has been written which is

also directed toward the re-entry problem under two degrees

of freedom. Reference 3 was not available soon enough for

consideration when these notes were originally prepared.
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Figure 5-1a. Coordinate system for general equations.

Z

Figure 5-1b. Free body force diagram.

Sketches from reference 5-1.
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Figure 5-3. Skip re-entry geometry.
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Figure 5-h. Glide re-entry geometry.

Sketch from TN hOb6.
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SECTION VI

SIX DEGREES OF FREEDOM EQUATIONS OF MOTION AND TRAJECTORY

EQUATIONS OF A RIGID FIN STABILIZED MISSILE WITH VARIABLE MASS

The study of space mechanics thus far has been restricted to a two-

dimensional analysis. For ma_y problems however, it is necessary to use

a three-dimensional analysis. Some of these problems are; the ballistic

missile with guidance whose trajectory is constantly being changed to hit

a target; for a space vehicle with guidance devices; for a manned vehicle

reentry or orbit which is capable of being steered, for the longitudinal

and lateral stability analysis of any space vehicle. Thus it becomes

necessary to examine the case of missile motions and trajectories for

six degrees of freedom which are general enough to cover all phases of

missile motion, including the launch, exit from the atmosphere, space

trajectory, reentry to the atmosphere add landing phase.

The purpose of this presentation will be to perform the classical

derivation of the equations of motion of a missile with variable mass,

and then to develop the equations of the missile trajectory referred to

special sets of axes. The derivation will be for the general case of

all six degrees of freedom.

In order to make the development more meaningful we will briefly review

some elements of vector mechanics and the matrix algebra of transformation

of coordlnates. The presentation will be divided into four sections.

6.1.

6.2.

6.5.

6.4.

Review of vector mechanics.

Review of matrix algebra of transformations.

Development of the equations of motion of a missile.

Trajectory equations.
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6.1. Review of Vector Mechanics

A vector is a quantity which has magnitude and direction. The

analytical shorthand of vector analysis has the advantage of permitting

treatment of directed quantities such as forces without the need of referring

them to an arbitrary set of coordinates. In the final stages of a develop-

ment, however, we usually define a coordinate system and resolve the

vectors into components along the axes.

6.1.1. Resolution of vectors.-

X

Z

k

_y

A vector can be written as :

A= 1A x + J Ay +KA_ 6.!-1

where i, J and k are base vectors or unit v_ctors along the x, y, and

z axes respectively and Ax, Ay, and Az are the components of the vector

A along the x, y, and z axes,

<
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It is seen that the ma_Litude of _ is

A= 7_2 + Ay 2 + Az2 6.1-2

and the direction cosCnes of the vector are

= cos c_= cos (A, x) = Ax/A 6.1-3

m : cos_ : cos(A,y) --A_IA 6.1-_

n = cos 7 = cos (A, z) = Az/A 6.1-_

ft_ther

Z2 + m2 + n2 = i 6.1-6

More will be said about direction cosines later.

6.1.2 Addition and Subtraction of vectors.- Addition and subtraction

of vectors are performed by the well known force polygon graphical method.

6.1.3 Multiplication of vectors.- There are two types of vector

scalar or dot product of two vectors is a scalar quantity and not a

vector. It is defined by

A • B = A B cos (A, B) 6.1-7

or in terms of components

A . _ : Ax _ + _ _ + Az Bz 6.1-8
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By means of relation (b.l-7) it is seen that the scalar products of the

unit vectors are

i. i=J. J=k. k=l}
i. J=i.k=J-k=0

6.1-9

The time honored example of the application of the dot product is:

W = _- X 6.1-10

m

where F is a force wh4ch moves along a vector distance X and W is

work done.

The cross product or vector product of two vectors is a vector and

is denoted by

u m m

A × B- C 6.1-ii

m

where the magnitude of C is given by

C = A B sin(A,B) 6.1-12

and the direction is given by the right hand rule.

..... / 17

/

/

/

A

240<
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or in terms of components

m

AxB= j 6.1-15

or

i × E = (AyBz - _ _)i ÷ (_ _x - A_ Bz)J÷ (_ By - _ _)k

6.1-14

By means of relations (6.1-11) and (6.1-12) It is seen that the

vector products of the unit vectors are

Ix J= Jxl k

Jxk= -kxJ i

k×i= ixk J

6.1-19

An exemple of the application of the cross products is

T= Rx F 6.1-16

m

Where F is a force acting on a particle whose radius or position vector

o

is R and T is the torque or moment of F about an axis through the

orig_n and perpendicular to the plane of R and F and directed by the

right hand rule.

# ,_ F J-" -
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Another example of the vector cross product is:

V=_x R 6.1-17

m

where _ is an angular velocity 3 R is a position vector and V is a

linear velocity. As indicated previously I V is given by

p

V-

i j k

Rx _ Rz

6.1-1b

or

or

V = i(Rz % - _ %) + J(_ _z - Rz%) + k(_ % - _ 5)

v-lVx+JVy+kVz
6.1-19

6.1.4 Momentum.- Momentum of a particle of mass m is defined as:

u- m_ 6.1-z)

where U is a vector which has the direction of the velocity vector

and therefore from (6.1-17) it is seen that

_42<
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. = (ix _) 6.1-21

6.1.5 Moment of momentum or an_ular momentum.- The moment of

momentum or angular momentum H is simply the moment of the momentum

vector about a given point or axis through that point. From equation

(6.1-16) we see that the moment of a vector about a point is simply the

radius vector R of that vector crossed into the vector U.

Therefore:

= R x U 6.1-22

and by (6.1-21)

_-_x (7_x5) = 6.1-23

For later use we note that

6.1-24

and

x (; x _) = = (_ • _)
m

6.l-2_

6.1.6 Vector operators: Gradient operator:- The operator V

(the gradient or del) is defined by

6.1-26

If we have a scalar field defined by _ = f (x, y, z), then

Z43 <
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v_= i_-x+J by bz
6.1-27

V_ is the gradient @ or del

An example of an important scalar field is the gravitational field.

Consider the potential _ due to a concentrated mass, m, in the earth's

gravitational field, namely

r

where r is the distance from the center of the earth to the mass.

Then F, the resultant force, is given by

F=V_-I_+O +k 6.1-29

or the gravitational force is the gradient of the gravitational potential.

To show this we note

r = Sx2 + y2 + z2 6.1-3o

and
br ,, x . x 6.1-51

bx Vx 2 +y2 + z2 r

a=i ___ = _._ . _r = .km . x 6.1-52
bx _r _x r2 r

6.1-33
by _r by r2 r
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_____ 5__. b_Kr_ km . z 6.1-_

bz ()r bz r 2 r

and F = _x / r2

Th_, if the mass m is in the gravitational field of ma_y other bodies

klm k2m k_m
whose potentials were defined as q_l = --; q)2 = _---; _ = --; etc.

rl "2 r5

then the total potential would be _ = q_i + q)2 + q_5 + .............

_nd the resultant gravitational force would be

F=V_

Other vector operators not used in this development are mentioned here

merely for the sake of completeness. The curl of a vector is:

Q

curl A =

i j k

b b _

bx by _z
6.1-56

md the divergence of a vector is:

_v7 = _x + by _Tz 6.1-57

_.5.5< .....
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6.1.7 Time rate of change of a rotating vector.-

m

R

l

From the diagram it is seen that the vector dR is the vector sum

of a component @R along(R + _)and a component _ to(R + _R)

i m

equivalent to (_R x R)dt

oR

I _ ÷ (_ X R)dt 6.1-38

J_ I _'I_ ÷ (_ X I) 61]___ 9

dt _t

This is the well known transformation for the rate of change of any

-
vector R from fixed to moving axes where --- is the rate of change of

_t

measured with respect to moving axes_ and _R Is the a_ velocity

of the moving axes with respect to the fixed axes.
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6.2 Matrix Algebra of Transformations

In this section we shall deal only with rotational matrices. A

rotation matrix performs an orthogonal transformation on s_ae quantity

such as a vector or set of vectors. The coordinate systems considered

are Cartesian and are "right-handed" systems.

Orthogonal matrices, which perform only rotations (also called

rotation matrices) have special properties. We will discuss some of

these properties.

6.2.1 Single rotation.- We start with a set of axes XN YN ZN

as shown below.

_, _'- YN cos ,

ZN, ZI

By rotating the system about the ZN axis through an angle , we obtain

a new coordinate system which we shall designate (XI Y1 ZI)" The trans-

formation or relation between the original and new system is obtained by

geometry and is seen to be

Y1

l

S

cos , sin , 0

l" ein* cos $ 0

0 0 0

bXN

Y. 6.2.1
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This transformation is called an orthogonal transformation. The elements

are called direction cosines, since each element for instance I cos +

is the cosine of the angle between XN and XI. The element sin _ is

the cos (90 - _) the angle between YN and X1 and the element - sin

is the cog (90 + _) the angle between XN and YI" Actually each element

of the matrix can be considered the scalar product of two unit vectors

having the directions of the indicated axes.

If we let

and denote the transpose of

o, [_c,)]_,E'(*)]'_
obtained by replacing (_)

I. cos $ sin $ _I

_T (,)_ = sin, cos ,

0 0

and define the matrix

is noted

!

I:"c,)] - l-_c,)]":

Stated in words the transpose of

the matrix obtained by replacing

to equation (6.2-1) we get

N -

P.J

6.2-2

and denote the inverse

IT (- _)_ as that matrix

then the following property

cos + -sin _ il[.,:,oO.,o
[_c,)]
(,) by

cos _ - sin + 0

sin _ cos $ 0

0 0 I

• : . e . •

6.2-3

is also its inverse and is also

(- $). Applying this principle

IIYI

Z]

6.2-4
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6.2.2 Two rotations.- We originally startea with a set of axes

_N YN ZN and rotated about the ZN axis through an angle , to obtain

a new set of coordinates (Xl YI ZI)" Let us now rotate the Xl YI ZI

system about the YI axis through an angle G to the new coordinate

system X2 Y2 Z2 as shown below.

X1

_5

Z_

From the geometry of the problem the transformation between the

system and the X2 Y2 Z2 is seen to be

2x21oInIIo
Z2 [sin 8 0 cos

or

X1

!YI I

rZI }

zl

XI YI ZI

6.2-5

6.2-6

_.2 K g_A I
A.':J[_ "- •
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Combining equations (6.2-b)and (6.2-1) we get

[_21 x{i1
U2J

6.2-7

This equation implies the rotation $ is performed first on XN YN ZN

followed by the rotation 8 to determine the new coordinates X2 Y2 Z2"

In order to return to the XN YN ZN coordinates from the X2 Y2 Z2

coordinates, from a consideration of the geometry we would rotate first

through a (- 8) then through a (- ,) or

l'I,2 6.2.8
&. ,,_

By making use of equation (6.2-5), equation (6.2-8) could be written as

zN

6.2-9

By taking the inverse of the transformation matrix in equation (6.2-7) we

can write

6.2-10

..2S0<
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A comparison of equation (6.2-I0) and (6.2-9) indicates

Stated in words equation (6.2-11) says the inverse of a product of orthogonal

transformation matrices is the product of the_ inverses of the individual

matrices taken in reversed order. This is the reversal property of

orthogonal matrices.

For subsequent use we note that equation (6.2-5) may be stated

LI!lllEc° e°slneol0
h -

X2

' Y2 '

Z2

6.2-12

6.2.3 Three rotations.- We began with a set of axes XNY N ZN and

rotated through an angle # to obtain the set of coordinates XI YI ZI

which we rotated through an angle 8 to obtain the set of coordinates

X2 Y2 Z2" Let us now rotate the X2 Y2 Z2 system about the X2axis

_,,__._ - obtain = new coordinate system which we shall

designate (Xb Yb Zb) as shown below

_4
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From the. geometry we see

or

q

looYb = 0 cos $ sin

zb |0 - sin $ cos

1n " (_)

Y2

Combining equations (6.2-i), (6.2-5_ and (6.2-13) we get

and inversely

or

z.j

zb

cos , - sln, 0

sin $ cos $ 0

0 0 i

a

cos 8 0 sin 8

0 i 0

sin e cos 8

.

0 0 '

0 cos _ - sin i

I

ko ,sin _ cos _I
.L

6.2-13

6.2-14

6.2-13

6.2-16

xb"_
I

I
,Zb]

6.2-17

2.52.<
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6.2._

direction cosines and are defined from equation (6.2.1_) as

_ii = cos _ cos 8

_12 " sin $ cos 0

_13 = " sin 8

m£1 = cos $ sin 8 sin _ - sin $ cos

m12 = sin # sin 0 sin _ + cos $ cos

m13 = cos 8 sin

n11 - cos $ sin 0 cos _ + sin $ sin

n12 = sin $ sin 8 cos _ - cos $ sin

n13 = cos 8 cos

Direction cosines.- The terms _iJ , mlj , nlj are called

6.2.21

Some interesting relations bet'_een these direction cosines or between the

6.2-22

directive cosines of any orthogonal transformation are the following

ZII 2 + mll 2 + rill2 = i

_122 + m122 + n122 = i

_132 + m132 + n132 = i

_iI _12 + mll m12 + nil n12 " 0

_12 _13 + m12 m13 + n12n13 " 0

Z13 _iI + m15 mll + nl 3 nll" 0

6.2-25

ZII 2 + ZI22 + _132 = i

mll 2 + m122 + m132 = i

rill2 + n122 + n132 - i

6.2-2_

 54<
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_ii mll + ZI2 m12 + _15 m15 " 0

roll nil + m12 n12 + m15 n15 = 0

nll _Ii + n12 ZI2 + nl 5 Z15 = 0

6.2-25

and

_iI ZI2 ZI3

mll m12 ml 3

nll n12 nl 3

= _ 6.2-26

The three rotations from XNY N ZN through _, e, and $ to Xb yb zb

are indicated on Figure i. If p, q, and r are defined as the angular

velocities about the Xb Yb Zb axes, then from Figure 6-1 it is a_parent

that

p = 6 - , sin 8

q = 8 cos _ + , sin _ cos 8

r = $ cos e cos _ - 8 sin

6.2-27

In order to get the weight component into the equations of motion

(which we will indicate later) the direction cosines must be computed.

On an analog type computer, however, the direction cosines are generated

by using the derivative forms of the direction cosines which are

_lJ = mlj r - nlj q

"n!J = nlj q " _lJ r

n!J = _J q " mlj r

where J = I, 2, 5 6.2-28

[SS<
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These relations are not developed here but may be demonstrated individually

in the following manner.

Referring back to equation (6.2-21) it is seen that

ZII ,,cos $ cos 8 6.2-29

and differentiating we get

@

Ill = - cos _ sin e 8 - sin _ cos @ 6.2-50

From equation (6.2-28) it is seen

_ll = mll r -nll q 6.2-31

By substituting the values of r and q from equation (6.2-27)

and values of roll and nll from equation (6.2-21) into (6.2-31) and

performing the indicated multiplication and reduction we get

= - COS $ sin % 8 - sin $ cos 8 6.2-52

which is identical with equation (6.2-50).



XN, YN, ZN

_, 8, q)

Xb' Yb' Zb

p, q, r

Uj V_ Ig

ib, Jb, kb

iN' JN' kN

V

t_

Ve

U

UT

m

H

RT

6-21

List of Symbols

right-hand Cartesian coordinate system fixed in non-

rotating earth, inertial axes (with ZN positive down)

angles used in specifying missile attitude referred to

as Euler angles (specified order of rotation _, 8, _).

body axes - right-handed coordinate system fixed in

missile body with the origin at the instantaneous center

of gravity. (See Figure 2.)

angular velocities of body-axis system (xb, Yb, Zb)

positive clockwise when looking in positive direction

of axes

components of resultant velocity V along body axes

Xb, Yb, Zb, respectively

unit vectors along the xb, Yb, and

unit vectors along the XN, YN, and

zb axes respectively

ZN axes respectively

resultant velocity of missile center of gravity

resultant angular velocity of missile or (xb, Ybp zb)

system _ = ibp + Jbq + kbr

Jet exit velocity relative to nozzle exit

Momentum of missile U - mV

momentum of missile and Jet

missile mass (slugs)

angular momentum of missile with respect to the center

of gravity or moment of momentum

angular momentum of missile and Jet

: S7<
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t

T

Fv

F

M

Q

D

Pe

re

Cx, Cy, Cz

Cz, Cm, Cn

S

LI, L3,

time after missile separated from la1_cher

resultant Jet thrust

resultant Jet thrust for the special case when the

thrust is along the xb axis

resultant Jet vane force

resultant aerodynamic force

resultant reaction control force

resultant external force acting on missile

resultant Jet thrust moment about center of gravity

resultant Jet vane moment about center of gravity

resultant aerodynamic moment about center of gravity

resultant reaction control moment

resultant external moment acting on missile

lift force on Jet vane

air density

Jet pressure at nozzle exit (gage)

nozzle exit area

distance from missile center of gravity to nozzle exit

aerodynamic force coefficients referred to body axes

aerodynamic moment coefficients referred to body axes

missile cross-sectional area

representative missile length (dismeter, chord length_

lengthp etc. )

distance of Jet vane lift forces behind center of

gravity



rl, r 3

W

A

7

X, Y, Z

Xe, Ye, Ze

Xg, Ygt Zg

_e

k

L

h

Ro

vw

Ve

va

V

Z, m, n

5a

6-23

distances from x axis to Jet vane lift force

missile weight, pound

azimuth angle of velocity vector measured with respect

to the Xg, Yg, Zg axes (+ from south to west)

elevation angle of velocity vector with respect to

the Xg, Yg, Zg axes (+ up)

angle of attack

angle of sideslip

right-hand Cartesian coordinate system fixed in non-

rotating earth wlth Z positive pointing north

right-hand Cartesian coordinate system fixed in rotating

earth

Geographic axes

angular velocity of earth (rotational velocity)

longitude

latitude

distance above earth's surface

radius of earth

wind velocity with respect to inertial axis

velocity component of earth's atmosphere

resultant aerodynamic velocity

velocity of missile center of gravity

direction cosines

aileron deflection

rudder deflection
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_e

51, 82, 55, 54

Ix,_, Iz

elevator deflection

Jet vane deflection

missile moments of inertia about Xb, Yb, and

respectively

Ix =/(y2 + z2) dm

ly =/(z 2 +x e) am

Iz =f C_2 + _)

_z, Ixz' Ixy
missile products or xnertia about Xb, Yb, and

Iyz =/yz dm

Ixz =/Y.Z d.m

Ixy =/Xy dm

d
(.) = -- except that

dt '
_= dm andm

dt

dI

dt

zb axes

zb axes

_60< ..
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Derivation of Equations of Motion

The geometry is shown in Figure b-l.T_o sets of Cartesian coordinate

axes are used in developing the _quations of motion. One set is fixed in

the body and is known as body axes and is shown in Figure _-2.The body axes

we designate as Xb, Yb, and zb. The other set is fixed with respect to

the earth and is known as inertial axes which we designate as XN' YN' ZN"

The orientation of the body axes with respect to the inertial axes

i_ d_f_ned by three angular coordinates @, e, and _ which are called

R_ler ang]e_. These angles are shown in Figure 6-1. The rotations must be

_-;ken in a certain specified order namely : ,, e, and _.

Furthnr definiticns of pertinent quantities are given in the list of

symbols. In appendix A some of the formulas pertaining to the development

are listed. An attempt has been made to use the standard HACA symbols

throughout although in certain cases this was not possible.

m

A schematic diagram of the missile is shown in Figure 6-3. The

vector represents the resultant angular velocity of the missile or

Xb, Yb, Zb_ body system.

The equations of motion will be derived by writing the rate of change

of momentum and rate of change of angular momentum equations.

6.3.1 Force equations.- From Newton's law we have the equation:

_ dt _N

6!<
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The rate of change with respect to inertial space of momentum of the missile

and Jet can be written

\-_-JN _ + _(_ + _ × re - _e)

6.3-2

Since U

angular velocity

of change of

is referred to the Xb, Yb, Zb system which is rotating with an

(see Fig. G-_with respect to inertial space the rate

with respect to inertia space is

dU I _ + _ X U

dt
6.3-3

as indicated previously in section 6.1.

By differentiating the momentmn

U - m_ 6.3-4

and defining
dm
--- - m we get
dt

m

dU 6.3-5

If we substitute equations (6.3-3), (6.3-4), and (6.3-3) in (6.3-2) we get

dt /N m _ -
6.3-6

which reduces to

dt /N m_ +

6.3-7

Since

dV
a'_" G.ib + {,,Ib+ "}kb 6.3-_
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and

and

_= P ib + q Jb ÷r kb

= ib + rey Jb + kb_e re X re z

6.5-9

6.5-io

m m

o_xV=

I_ Jbkb

I b

q r

v V

= Ib(wq- =) ÷ Jb(= - vp)+ kb(_ - uq)

6.5-11

and

X _e = ib(rez q " rey r) + Jb(rex r - rez P) + kb(rey p - rex q)

6.3-12

we have (substituting equations (6.3-12), (6.3-11), and (6.3-6) in

(6.3-7)

d _T\ = _m(& vr) &(q re z
-_ljN + wq- + - r rey)} Ib +

a(_r + ur wp) +_.(r rex - p ez_ Jb +

_(,+_- uq)÷_(_r_ - qrex})kb- _ We-

6.3-13

which is the force equation.

6.5.2 Moment equation.- The moment equation about the missile center

of gravity is

=M

N

6.3-I_

;. G3 <
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The rate of change with respect to inertia space of angular momentum

of the missile with respect to the center of gravity including Jet effect

_S

rex -
N _N

6.3-13

where

d.H --
m -- -#-G_X H

\dt / dt
N

6.3-10

From the definition of angular momentum we can write

ff =/_ x (T_x _) d,n 6.3-17

wherc

R = x ib + y Jb + z kb 6.3-18

The triple vector product as indicated previously (equation (6.1-25))

can be wrltten

X (_ X R) l i_2 _J_. I_(I_ " _) 6.3-19

where

and

R2 = (x 2 + y2 + 72 ) 6.3-20

" P ib + q Jb + r kb 6.3-21

Substituting equations (6.3-21), (6.3-20), (6.3-19) and (6.3-10)

equatxon (6.3-!7) results in

H'f{( x2 +Y2 + z2) (P ib + q Jb +r k'°)"1

(x ib + y Jb +' z kb) (px + qy + rz)_ dm
J

into

6.3-22

_.64 <
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By performing the indicated multiplications equation (6.3-22) can be

expressed in the following form

m

H= {,,r<,,+.,>°-.,sx>..,=-rSx.°)-+
,,f <_=+=,>o.,.f>,,<,=.,fx>.,,,>+
7s<-' °-,i.z°-,s,-°7,

6.3-23

and _j introducing the usual definitions of moment of inertia _nd product

of inertia shown in the list of symbols we finally get

m

H = (Ix p - Ixy q - Ixz r) ib + (ly q - ly z r - Ixy p) Jb +

(I z r - Ixz p - Iyz q) kb

6.3-24

It is usually conventional in missile work to choose the body axes as

the principal axes so that

Ixy = Iyz = Ixz = 0 6.3-2.5

thus we have the final expression for angular momentum

m

H= (Ix p) ib ÷ (Iy q) Jb +Iz r k_ 6.3-26

The rate of change of angular momentum is obtained by differentiating

(6.3-26) and becomes

(Ix_ - Ixp) Ib+ (Zyq - _y q)Jb * (Z_r {,.r) kbt m

dt

6.3-27

T

_F p r--,
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The product _ × H is

a_XH-

I x p _ q I z r

= (z z - _) rq i b + (zx - z=) pr Jb ÷ (Zy - Zx) qp kb 6.3-28

Similarly the thrust term becomes

[ -- We]r e x (_ X r e - _e ) = m re 2 _- re(r e • _) - r e x
6.3-29

= mI(rex2 + rey2 + re2z) (P ib + q Jb +r kb) -

(rex ib + Jb + kb) (rex p + q + r)_ -rey re z rey re z

By performing the indicated multiplications, equation (6.3-29) can be

expressed in the following form

[r - }- fo _ _ +r rez)t ib +n: e × (_ X re - Ve) m (re + re ) - rex(q rey

r,: (rez + re ) - rey(r rez

"[ + q -m (rex2 + r e ) - rez(p re x

6.3-30

266<
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Finally by substituting equations (6.3-30), (6.5-2_), (6.3-27), (6.3-16),

and (6.3-19) into equation (b.3@4) we get

[
/N = Ix _ " (Iy - Iz) qr - Ix P +

m (r e + re2z) rex(q rey rez

[_ _ - (Iz- A) r p - _yq +

m + " + Jb(rez2 re2) rey(r re z P rex +

Zz_ - (Ix-zy)p q- {,r +

Ir + - + q rey)llm' (re2x re_) rez(P re x kb -

. m _ m

mreXVe=M

6.3-31

6.3.3 External force and moment systems.- The resultant external force

F is the sum of the aerodynamic forces, the gravitational force, the control

forces acting on the missile and the force caused by the Jet pressure at

the nozzle exit or

The resultant moment M is due to all the forces listed above except

the gravitational force which has no moment about the center of gravity.

m _ m m

M- MA+ MC + r e X Ae Pe 6.5-33

6.3.3.1 Aerodynamic forces and moments.- The aerodynamic forces

and moments along and about the principal axes are defined in the con-

ventional manner as follows : _. _.:
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mqd

Fx = Cx _ S Va 2

0

Fy.Cy sv2

= RSVa2Fz Cz 2

6.3-_

Mx = CZ _ S Va2

0 SMy = cm _ Va2 _ 6.3-35

0

= cn _ s v2

where C_, Cm, and Cn are the moment coefficients which give the moments

about the missile center of gravity.

We can further specify that each aerodynamic coefficient is a function

of the variables 8, e, 8, _, P, q, and r such that:

Cx = " Cxo " Cx_ _ " Cx& "2V" " Cxq (2V)

_ p_ r_

= Cyp(_) Cyr (_}Cy _ _ + Cy_(_V)+ +

Cz " "Czo " Cz_ Cz_ "2V" " Czq (2V)

C_ - C_lB 8 ÷ C_ (W) + C_p (2) + CZr (2-V

Cm = Cmo ÷ Cm_ + Cm_ "2V" + Cmq (2-V)

Cn - Cn_ _ ÷ Cn_ ( ) ÷ Cnp (2P_V_) + Cnr (_-_)

41" f'_ ' *

_<

6.5-56
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Definitions of a, _, sad Va will be given later in the development.

6.3.3.2 Gravitational force components.- The c_ponents of the

weight term which we included in the equations of motion are computed from

the transformation equation between inertial and bo_v axes (which was

developed in section 2) and are

%

%

_zb

ZII _12 _151

= mll m12 ml3

nil n12 nl3

I°I
I

! )
: •
I

I

W

LJ

6.3-37

or

_ )2w_ = Zl3w= zl3_ = _13 mgoR_"+ h

Wy b = m13 W = m13 mg = m13 mgo
o h

Wzb = nl3W= n13 mg= n13 mgo< Rn _ 2
Ro +

6.3-3,_

_oh)2= and go = 32.2.
where g go Ro +

It should be noted that although these weight components are the

ones usually used, they are approximations based on the flat earth concept,

since they neglect the nonparallelism of the gravitational attraction at

different points of the earth's surface. The true gravitational force or

weight components will be specified later in section 6.4.

269<
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6.3.3.3 Control forces.- The control forces, of course, depend on

the type of controls used on the missile. For purposes of this dis-

cusslon we shall assume the missile is equipped with three types of

controls. (See Figure b-2.)

I. Conventional aerodynamic controls

2. Reaction controls

3. Jet vane controls

The resultant control force and moment equations can then be indicated as

_c=F5 +FR +Fv 6.3-39

and

The conventional aerodynamic controls are considered to be aileron

5a, rudder 8r, and elevator 5e. The components of these aerodynamic

forces and moments caused by these controls are assumed to be the following:

F5x = 0

F_ - cy_ _ s Va2 8r

FSz - Cz5 e _ S Va2 5e

6.3-41

M'/G--
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and

P p

%x = cz8a _ s v$ z 6a + C%r _ S Va2Z%

P S Va_ Z5e 6.5-_2

0 P

_z - Cn8 a _ S Va2 Z6a + C_6r _ S VaR Z_r

The reaction controls are ass_ned to be force and moment components

along anl about the ._issile principal body axes of magnitudes FRx , F_,

%.

6.3.3.4 Jet vane controls.- The Jet vane forces and moments are

considered on the basis of the vane arrangement shown in Figures 6-4 and 6-3.

The components of the total Jet vane force acting on the missile are

assumed to be the foll_ing:

FVx = - (total drag of all Jet vanes) = 0

Fry= (Q3+ %) = (_ 83+ _ 6,+)= _d_(63+ 6_)

aQ dQ,62) dQ (6 z + 62)Fv -(Q_.+_) =(_6j.+_ =
z

6.3-45

The components of the total Jet vane moment about the missile center of gravity

ere

_7i<
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aQ dQ aQ 53. r3 dQ 54MVX = rI _'_ 51 - rI _'_ 52 + r5 _'_

My = Ll aQ aQ
Y _-_ 81 + Io_--d552

d0,53, z_5_

6.3.-_4

where LI, D2 , L_, and 14 are the distances of the Jet vane llft forces

behind the missile center of gravity.

Other possible types of missile control not detailed here are control

by means of a swiveled or gimballed rocket and control by use of Vernier

engines.

6.3._ Equations of motion.-

change of momentum

"i_/_

becomes (where

The equation of motion due to rate of

m

= F 6.3.1

Ve is added to both sides of (6.3-I)

6.3-_5

where

w

'Fj" Ae P% +roVe = Jet thrust 6.3-46

The equation of motion due to the rate of change of angular momentum

6.3-14
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becomes (where 9. (r e × VL)) is added to both sides of equation (6.5-i_)

where

N

6.3-h7

o m

blj = r e × (A e Pe + m _e ) = Jet thrust moment about the c.g.
6.3-h_

Equation (6.5-h9) resolved into its components thus generates the following

three algebraic equations.

m (u + wq - vr) + & (q rez - r rey) = FAx + Wx + FOx + FJx

6.3-49

re(v+=
+m (r - p ) - FAy ÷Wy ÷ +Fjy• rex re z FCy

6.3-50

m (w + vp - uq) + m (p - q rex) - +W z + +rey FA z FC z FJ z

6.3-51

Equation (6.3-47) resolved into its components generates the following

three algebraic equations

F

Ixp - (ly - Iz) qr - IxP + mlp(re_ + re_) + rex( q rey +rrez)i

6.3-52

L V J<
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M_ *my +my 6.3-93

T.r -(I x - ly) [q- i z r + mfr(re_

= _;A +_z +MJzZ

+ re2) + r e (P r e + q re _

y z x yJ

6.3-_

In order to simplify the equations of motion the following assumptions

_re made. It is assumed the Jet exit velocity relative to the nozzle exit

i_ _!cng the xb axis_ that is

ve = ixb v,

er 6.3-95

slid

then

cr

then

further

Vex- re, Vey= vez=0

m

Pe = ixb Pe 6.3-96

r-e = ixb re 6.3-57

= -0
ray re z

FJx " Ae. Pe + m Ve = T

Vjy - vjz - Mj- o

With thes_ simplifications the six _quations of motion become

6.3-5b

6.3-99

• I"_ J ' 4
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m(V÷ _ - _) - _ rer _ Wy÷ F_ ÷ FCy

Ixp- (zy- Iz)qr- Ix; - MA_+MCx

Iyq- (Iz - Ix) rp - iyq + m qre2-MAy + MCy

Izr - (Ix - Iy) pq - Izr +_ rre 2. MAz + MCy

6.5-6o

6.3-61

6.3-6e

6.3-63

6.3-6_

6.3-65

By substituting the components of the aerodynamic force and moments,

the weight components and the control force components derived earlier

into equations (6.3-60) to 6.3-65) inclusive we arrive at the final set of

equations of motion of the missile with variable mass shown on the following

page. The equations of motion for coasting flight or the (no thrust) con-

ditions are also indicated on the page following.

6.3.9 Remarks on solution of e_uatioms of motion.- The six equations

of motion (6.1) and (_.b) contain six unknowns u, v, w, p, q, and r

If the solution is performed on the analog, three more equations are added

which generate the direction cosines needed to include the weight term in

the equations of motion•

_13" m13 r - n13 q

&13" n13 P " ZI3 r 6.3-66

n15 = Z15 q - ml_ P

_ _'I rT,r-



U_

N

"-

tj ,_
+ k.)

+ +

,¥
_. _.) .'_

%)
q. .4. ,t-

t_ t_ t_

_1 + .I

_ m

II 11 II

I I I

_'- i,. _..

._. _ ÷

•I- +

_ ""--i

II

_ + -I-

+ +

•_. _.._
__ _ _ _ "£ ,_

II II II

I | I

iI II II

i.,.

I I I

I I I



•_, _
+ i

•E .£

I.I ',_ IJ

II II II

I It U

0 '_ ,_

II 11 ,

°_

II tl



6-_2

The Euler angles _, 8, and _ which specify the instantaneous

missile attitudes can be determined from the equations (6A-2) given in

appendix A which are

• 1
t=

cos e
-- (q sin @ + r cos _)

= q cos _ - r sin _ 6.3-67

- p + tan e (q sin @ + r cos _)

6.3.6 Remarks on choice of axis system.- Principal body axes have

been used in this development of the equations of motion; however we could

equally as well have chosen stability axes or wind axes. Each set has its

inherent advantages and disadvantages.

Choice of body axes offers the advantage that the mechanics of the

problem are simplified by the elimination of products of inertia and their

rates. The disadvantage of principal body axes is that the aerodynamic

coefficients are sometimes difficult to determine in this coordinate

system and the true weight or gravitational component is difficult to

incorporate in the equations. The weight term is usually approximated.

Stability axes (see xs in Fig. 6-6c) offer the advantage that

the aerodynamic coefficients are easily specified. They have the dis-

advantage that products of inertia and their rates must be known and the

weight component is difficult to incorporate in the equations.

Wind axes are used frequently since the force equations are easily

written for this axis system and the weight term is easily incorporated.

The moment equations however have moments of inertia and products of inertia

which vary not only with the time varying mass, but also with respect to the

body attitude in the wind axe_,



6.4 'AraJectc_, Equations

The path of the missile center of gravity with respect to a given

set of coordinates represents its trajectory in those coordinates. In the

development of the missile equations of motion, we defined two sets of

axes (Xb, Yb, Zb) body axes and (YN, YN, ZN) inertial axes.

6.4.1 Inertial axes.- The trajectory of the missile center of

gravity in the (XN, YN, ZN) inertial axes can be computed in several ways,

one of which is the following. From a solution of the equations of motion

(6.5-60) to (6.5-65) time histories of (u, v, and w) are obtained. Using

the transformation defined in equation (6.2-19) we. can obtain the velocity

components alon@ the inertial axes from

uli1 6.4-1

and an integration of VXN , VyN , and VZN , with the proper initial conditions

yields the trajectories XN, YN, and ZN. This operation is indicated by

Integratlng 1

Matrix J vYN 
i

vz l

6.4-2

Since further information of a missile trajectory may be desired

such as latitude, longitude, and attitude of the missile with respect to a

stable table or stabilized platform we define some new sets of axes to yield

this information.



If we consider the inertial axes (XN, YN, 5N) fixed in the non-rotating

earth as shown in the following sketch

we note that the earth would rotate about the (- ZN) axis using the right-

hand rule. We would prefer to have the earth rotate about the (+ Z) axis;

therefore, we define a new axis system (X, Y, Z) such that the (+ Z) axis

goes through the north pole as shown in the following sketch.

Z

;y

X

The (X, Y, Z) axis is obtained from the (XN, YN, ZN) axis system by a

rotation of I_0 ° about the YN axis. The transformation between the

(xs,YN,z.)_a (x.Y, z) axesis
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I°xI }Ooo
This may be obtained by letting e = 180 ° in equation (6.2-5).

(6.4-3) may be written as

6.1_-3

Equation

6.4-_

6._.2 Moving earth axes.- The earth rotates at an angular velocity

O_e. If we let the angle

H- o_ t 6._-5

and define a set of axes fixed in the rotating earth as (Xe, Ye, Ze),

then at a given time the (Xe, Ye, Ze) axes would be oriented with respect to

the (X, Y, Z) axes as shown in Figure 6-6a.

A--hetransformation between the two sets of coordinate systems becomes

or

ICosSlnO= sin H cos H 0

0 0 1

6._-6

6._-7
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6._.3 Local geographical axes.- A right-hand set of Cartesian coordinates

(Xg, Y8, Zg) is defined as shown in Figure 6-6 such that the Zg axis is

always pointing toward the center of the earth and the Xg axis points

south. The local geographical axes can be obtained from the (Xe, Ye, Ze)

moving earth axes by the following three rotations

(i) Rotate (Xe, Ye, Ze)about Ze through the angle _ to obtain

the new coordinate system (XI, YI, ZI)"

(2) Rotate (XI, YI, ZI) about Yl throu@h the angle of _ to obtain

the new coordinate system (X2, Y2, Z2)-

(3) Rotate (X2, Y2, Z2) about X2 through the angle 180 ° to obtain

the new set of geographical axes. (Xg, Yg, Zg)

These three rotations are similar to the three performed in section 2

where , - k, 0 =_ and @ = 180 °. The transformation which results from

these three rotations on (Xet Yet Ze) to obtain (Xg_ Yg, Zg) (which is

similar to that of equation (6.2-18)) is

Zel

Xg

,Yg =

Zg

or

_o, _,cos_)_in _,)(- _os_ sin _)

_in _ cos_')(-cos _)_sin _,sin_)

L(- sin_) o (-_os_) g

(,in _) (- cos_) 0 _l

6._-8

Xel

:_I 6.4-9
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we can write equation (6.4-9) as

Yg =

g

6.4-1o

in order to define the transformation matrix [Tb].

6.b.h Latitude t longitude t and altitude.- Time histories of latitude,

longitude, and altitude are derived from time histories of Xe, Ye, and Ze.

The angles used in specifying the attitude of local geographical axes

are k, the longitude and 2, the colatitude. If the latitude is designated

by L, then

L = 9O - _ 6.4-n

The geometry of the problem is illustrated in the following sketch

/
xe_

_ >x e
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From the geometry of the problem the following relations are obtained.

(_o ÷h) - _xe2 +Ye 2 +ze 2

Xe

(RO + h) cos L

= sin (9o-_)
6.4-12

or

Xe = (R0 + h) cos L cos k

Ye

(RO + h) cos L

- cos (9o-_)
6.4-13

or

Ye = (Ro + h) cos L sin A

ze
= sin L 6.4-14

(Ro+ h)

or Ze = (Ro + h) sin L 6.4-15

From equations (6.4-10) and (6.4-12) we get the relation for the latitude L

which is

L = sin "I _e

_Xe2 + Ye 2 + Ze2

6.4-16

Dividing equation (6.4-14) by (6.4-13), we get the relation for longitude

which is

A = tan "I Ye 6.4-17

The velocity vector of the center of gravity is oriented in the

geographical axes by the azimuth angle A and the elevation angle 7.
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The azimuth angle A is the angle in the Xg, Yg plane measured in the

positive direction from south to west; in a physical sense it is our compass

angle plus l_O °. The elevation angle y is measured + up. From the

geometry it is seen

VXg = V cos 7 cos A

Vyg = V cos 7 sin A
6.4-18

VZg = V sin 7

from these relations we get two expressions for A and y

tan A = VYg

Vxg
6.4-19

and

Time histories of A and 7

sin 7 = --_ 6._-20
V

can be computed from equations (6.4-19) and

(6.4-20) if time histories of VXg , Vyg, and VZg are known. From equations

(b.h-1), (6.4-_), (6.4-7), and (6.4-10) we can write

gj w J

6.4-21

which permits the computation of the needed __VXg, Vv , and VZ ."_ g

from

V is computed

v - "_/Vxg2 + Vyg2 + Vzg2 6._-22

285 <
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In sun_a_y, the geographical set of axes was defined in order to

si'eci_' the attitude of the missile with respect to a stabilized platform.

The attitude is given by time histories of A and 7- The specification

of moving earth axes Xe, Ye, Ze permits the computation of tJome histories

of altitude, latitude, and longitude. The local geographical axes are the

same as the earth axes defined in ASA YlO. 7-195_.

b.h.9 True weight component.- From Figure 6-6c it can be see that

the true weight component W acts along the Zg axis. The true weight

components in body axes may thus be given by

w_

ZII 112 113

mll m12 ml 3

nll n12 nl 3

- W cos L cos (h + H)

W cos L sin (k - H)

- W sin L

6.4-23

where the direction cosines llj , mlj , and nlj are defined in section 6.2

equation (6.2-21).

6.h,6 Definition of V,, _ and _.- The velocity vector Va which

is used to determine aerodynamic forces and moments is the resultant of three

vectors

Va = v - Ve - vw 6._-2_

n

where V is the velocity vector of the missile center of gravity referred

to inertia axes, VW is any wind velocity vector and Ve is the velocity

component of a particle of air due to the earth's rotational velocity.
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Ve=_XR=

or

If the components of

then

We can express %' as

and from equation (6.4-26)

therefore

i j k

0 0 _e

x_x N ZN

ve - - i _ YN + J _ x_

are =d

m

Va= iu a + J va+kw a

V= i u + J v +kw

ve - - i (_eY.)+ J (_ex.)

u_-u +_ YN-"W

va = v - _e XN - vw

Wa=W -W W

The angle of attack a and sideslip

6.#-29

6.#-26

W-a as shown in Figure 6-5

6.#-27

6.#-28

6.#-26

6.#-29

are defined by Figure 6-9. It

is assumed that the missile sideslips first then performs an angle of attack.

u_
cos _ = 6.4-50

va cos

w a
sin _ = 6.#-31

va _os

From Figure 6-9 it is seen

"_S'7<
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V

sin _ - -_ 6.4-32

Va

or

= tan "I w--%a 6._-33
ua

= sln -I v.__a 6.1_-_

Va

6._.7 An_ular velocity rates.- If we designate Pa, qa and ra

as the angular velocity terms which cause the aerodynamic moments about

the missile center of gravity and note that

m

a_ - i Pa + J qa +k ra

and _ - i p + J q +k r

6.4-35

"then

- r - 6.4-36

where _ X___ is a correction due to the curvature of the flight path.

R2

This correction is small and therefore usually omitted.

The density 0 is a function of altitude h and would have to be

known to perform a computation. The computation of initial conditions to start

the problem is a major task and will not be discussed here.
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CONCLUDINOREMARKS

This has been a brief and rapid introduction of the equations of

motion =.nd trajectories of a rigid fin stabilized missile with variable mass

for the genera_ case of all six degrees of freedom. If time and space

permitted, much more could be said about reducing the general six degrees of

freedom to two or three degrees of freedom and simplifying by other

techniques such as roll and yaw stabilization. The equations of motion

could also be presented referred to wind axes and stability axes, and

compared with those usually found in the literature.

It should be noted further that there are also spin stabilized missiles

which entail other effects not described here such as magnus effects,

gyroscopic effects, aerodynamic effects due to spin and cross-spin, etc.

This is another subject in itself, and is not dealt with in these notes.

A C)._ -



APPENDIX 6-A

Skm_uary of Formulas Pertaining to the Development

From the geometry of Figure 6-1_see the angular velocities about the

body axes ere given by

p _ _ - _ sine

q = e cos _ +_ sin _cos e

r = _ cos e cos _ - _ sin

6.A-I

Equation (6.A-I) can also be written as

1 (q sin $ + r cos $)

e = q cos _ - r sin 6.A-2

= p + tan e (q sin $ + r cos $)

The angular velocities about the inertial axes

_XN._,. ,=d '_N are

XN, YN, ZN, denoted here by

O_XN = _ cos $ cos e - $ sin $

_N = _sln Vcos e +_ cos,

O_N- , - _ sin e

6.A-3

The transformation from body axes Xb, Yb, Zb to inertial axes XN, YN, ZN

is given by equation (6.2-IG) which is

2SO<
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XN Iii mll nll Xb

YN = _12 m12 n12 Yb

ZN _13 m13 n13 Zh

6.A-_

The direction cosines

is

where

11J, mlJ, and nlJ are defined in equation (6.2-21)

A vector quantity referred to XN, YN, ZN axis system denoted by (=)

(=) = ( )XN iN + ( )YN JN + ( )Z N kN

A vector quantity referred to the xb, Yb, zb

6.A-9

( )xN= zn ( )xb+ mzz( )Yb+ nn ( )zb

( )YN = zI2 ( )Xb + m12 ( )Yb + n12 ( )zb 6.A-6

( )z_= h3 ( )_ + mz3( )Yb+ n ( ),_

axis system denoted by

(') = ( )xbib+( )Yb4 +( )zbkb

( )_ = hz ( )xN + zz2( )YN+ h5 ( )z_

(-) is

where

( )Yb= mzz( )xN+ mz2( )YN+ ram3( )z_

( )z b =nll ( )X N + n12 ( )Z N + n15 ( )Z N

Integration of equation (6.A-2) yields

6.A-7

6.A-8



_ot

e =;0 t

=;0 t

_t ÷ _(o)

dt ÷ e(o) 6.A=9
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SECTION VII

INERTIAL SPACE NAVIGATION

7.0 Introduction

In the past few years increasing reference has been made to a new

type of navigation which has been termed Inertial Navigation. The purpose

of this section is to give a brief introduction and discussion of some

of the fundamentals of inertial navigation. The material presented is

derived from the various references which are listed at the end of the

text. In many cases the text and the Figures presented are taken directly

from these references.

Although the concepts oi Inertial Navigation are relatively new the

principles upon which the process is based have been well known for years

and essentially it is a simple application of applied mechanics. In order

to learn something of the subject it will be approached from the standpoint

of trying to answer the questions:

A. What is it?

B. Why do we need it?

Co How does it work?

D. How well does it work?

7.i What is Inertial Navigation?

One definition of Inertial Navigation has been given as: Navigation

without the use of ar_ radiation a either natural or man made. -- in other

words it is self contained. This definition is of a rather negative nature

that m_rely gives one of the attributes of an inertial navigation system.

A more descriptive definition would be: A process in which determination

of navigational parameters with respect to the fixed stars is made from

8,0!<
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me_.surem_nts of accelleration acting on the body. If the navigation is

concerned with _osition with respect to the Earth (or to another rotating

pl%net) the process would also include a conversion to navigational param-

eters referenced to the moving earth. An inertial navigation system is

then one which is self contained and one that by a process of integr_tion

of imposed accelerations determines changes in velocity and position.

7.2 WhV do we Need Inert_a] Navigation?

The present methods of m%vigation are considered fairly accurate and

we have so msmy means of navigating that tt is hard for even the navigators

to keep up with them. Airplanes can tm/_e off and fly half way around the

Earth and lsnd on a particular runway at a particular airport. Bombers

cmn fly over a desired target area with good precision even in conditions

of bad weather. The comparatively new developments in Omni DME, Loran,

r_Aar n__v_gation symte,_, etc. are successful to the extent that additional

new methods of n_vigation must be questioned as to their usefulness.

Inert%al n_vigation does promise to fill certsin needs that are not

adequately met by existing systems. The advantages of inertial n_vlgatlon

systems can b_ placed into two categories: military and civil.

Military advantages :

(i) Does not depend on ground facilities for reference

(2) Is not subject to Jemming -- Newton's l_ws of motion and

gravitation are difficult to tamper with

(5) F_tits no radiation that can be detected by an enemy

(L) By virtue of its independence of outside signals there is no

limit as to how many systems can b_ utilized simultaneously.

802<
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Civil application advantages:

(i) Could possibly be used to simplify the existing complex

network of navigational facilities

(2) Would allow continued operation of our commercial transport

fleet in times where enen_y attack may be threatened

the existing navigational aids would have to be turned off

to prevent homing in by enen_y

/4!: tn_e roa3_n_: are in addition to the obvious advantage in applica-

tion to outer space flight where most of the present navigation schemes

have no meaning.

7- 3 How Does Navigation Work?

7.3.i Basic principle.- Inertial navigation is a rather fundamental

application of classical mechanics whereby the postion or change in position

of a body is determined from measurements of accelerations. It is an

application then of Newton's Laws of Motion. In addition there are other

principles cr facts that have important bearing, such as: (I) Newton's

Law of gravitation which states that every mass particle attracts every.

other mass particle with a force proportional to the product of their

mas_es and inversely proportional to the square of the distance between

the particles; (2) the principle of equivalence in the general theory of

re!atlv_ty that says gravitational mass and inertial mass are equivalent;

(3) the spatial direction of the Earth's gravitational field at any point

serves as a unique identification of that point.

This latter point requires further discussion. As will be pointed out

in SECTION XIV the shape of the Earth is not a perfect sphere, but it can
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be approximated by Hayford's Spheroid of 1909 which has an ellipticity of

1/297. Because of this shape the normal to the gravity field does not

_!vays he,d directly to the center of the Earth. For example at &,5° latitude

there _s about ll minutes of arc between the plumb bob vertical and the

true line to the center of the Earth. Shown on Figure 7-1 is the geoid

zurface which is by definition an equipotential surface of the Earth's

gravity fie_.d. The direction of the groodient of the gravity potential at the

_n_fa_c r,f the gecid, the force of gravity, is defined as the vertical.

This Iz def_n-d by a plumb bob with its base fixed with respect to the

zurf_ce of the Esrth. The specific force of gravity _s then a vector

addition of the _r_v!t_-tion sp_clflc force and the centrifugal specific

force assoc!_ted with daily rotation. Because the geoid does not have a

smooth s_face, the vertical is not in general parallel to the normal to

the reference ellipsoid at the same position. The angular deviation, called

the station error im generally less than one second off arc.

7.3.2 Coordinat_ s.v,_tems.- The uniqueness of the vertical at shy

point is the basis of astronomical position. The astronomical latitude is

the complement between a llne parallel to the Earth's polar axis and the

local gravity vector. The astrono_dcal longitude is the tingle about the

Earth's polar axis between a reference vertical (usually that at Greenwich)

and the local vertical. The astronomical set of coordinates are very useful

in inertial navigation but unfortun_.tely accelerometers measure with respect

to inertial sp...ce so that oth_r coordinate systems are also neeessery. Shown

in F_gure 7-2 are th_ G-o_entrlc Inertial coordinate system which is centered

in the earth with the ax_s coincident with the Earth's polar ,gxis. Also
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shown in Figure 7-2 are the Geocentrlc E_rth reference coordinates in

which the Z axis is again coincident with the polar axis but the X and

Y axis are fixed in the Earth and thus rotate around the polar or Z axis

at the rate of 19° per hour. Another useful coordinate system is shown

in Figure 7-3 and is referred to as the local geographic reference coordinate.

In this reference system there is the option of alining one of the axes along

a great circle which could include the departure point and destination and

thus would simplify the nav_gation problem. The significant difference

between the geographic coordinate of Figure 7-5 and the a_tronautical

coordinate system is that the latter has the Z axis alined with the local

vertical rather than normal to the ellipsoid.

Knowing something of the nature of the gravity field about the Earth

and the various coordinate systems which are useful it is well to return

to the question of how does Inertial Navigation work.

7.3.5 Simplified example.- As a simple example consider a cart on a

table top. The cart is initially at rest and a force is applied to move it

along the table tog. Its position at arAy time can be determined by measureing

and doubly integrating the applied acceleration. Mechanizing this simple

problem brings out many of the significant features of inertial navigation.

First of al] since acceleration is a vector quantity accelerometers

m_st be mcunted on the cart so as to sense the components of the acceleration

with respect to the coordinate system within which the measurement of

position is to be made. Each acce]erometer must be accurate end also must be

maS_ntalned in a precisely kn_nn relationship to the coordinate system

this latter requirement g_Ives rise to the need for a stabilized mount for
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the accelerometers that will maintain the desired orientation. Because an

accelerometer cannot distinguish between acceleration and gravity either

the stable mount must be oriented so that gravity components are not sensed

or else corrections must be added to account for this factor.

For such a simple example the components of an inertia] navigation

system could be split into three groups: (I) accelerometer package to sense

accelerations wi_n respect to the axis of the chosen coordinate systems

(2) a stable platform (which normally uses integrating rate gyros as its

primary instruments) that will maintain the orientation of the accelerometer

package and (3) a computer that will doubly integrate the outputs of the

accelerometers and put in suitable corrections so that position will be

_nown.

When the range over which the cart on the "table top" travels becomes

very large the problem becomes more complicated because the components of

gravity which must be accounted for become large. In the sketch of Figure

7-4 which shows the X coordinate tangent to the surface of the Earth it

can be seen that as X becomes large with respect to the radius of the

Earth the force of gravity (which effectively lies along the line from the

center of the Earth to the position of the cart) tend to become alined along

the X axis. The acceleration sensed by the X accelerometer is

e.

Ax=X+g x

is the component of gravitational force. This component may bewhere gx

expressed

gx = go

a2 x

(a + h)3

3C6<
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If it i_ as_Ltm_d +hat there is .%neg!Igib]e _h_.nge in altitude the

e.vpr_s-ion may be simplified to

X

gx.= go-
a

an! _t!]! _rov_de an adequate approximation for gx for relatively s_.!!

_h_nge_ in X.

7.3.4 Schuler tuned pendulum.- Even though it is -_ithin the capabi!itv

of a computer to calculate gx for large changes in X this operation places

rather stringent requirements on the computer. Another, perhaps morereasonab_e,

approach is to r_intain the orientation of the stable platform upon which the

accelerometer is mounted so that it will be normal to the force of gravity

an! th_ the accelerometers would not sense the components of gravity.

This could be done by mounting a pendulum on the stable table so that as

the pendulum alined _tself with the gravity forces the table would be

alined perpendicular to the pendulum. This problem was first approached

by Dr. Maxmilian Schuler, a German scientist and professor and it was he

who first pointed out that what was needed was a pendulum with vertical

deterndnation characteristics independent of vehicle movement. A simple

pendulum having a reasonably long arm would be subject to disturbances

away from the vertical, if its base were accelerated. To be free of such

errors the length of the pendulum arm would have to be equal to the radius

of the Earth. With such a pendulum the point of suspension or base of the

pendulum could be moved about over the surface of the Earth without dis-

turblng the pendulum mass and thus the pendulum would always indicate the

vertical. Such a pendulum is, of course, impossible to build and even a

distributed mass type of pendulum having the same dynamic characteristics
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would be virtually impossible to build because of the extremely small

distances required between the centroid of mass and the pivot point.

Because the pendulum is essentially a second order undamped system

it is possible to construct a servo system having the same dynamic

characteristics. The period of a pendulum is determined from the

formula

T = 2_ -_ where L is

the length of the pendulum and g the gravitational acceleration.

The Schuler pendulum has a period of 84.4 minutes. A simplified

schematic of the operation of a servo system Schuler Pendulum is

shown in the following diagram:

X XT

%T " angular rotation of the table upon which the accelerometer is mounted

9 x - angular arc over the Earth's surface covered by the x movement

of the table

- error in alinement of table normal to true vertical0
E

3C8 <
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The acceler_aeter is mounted on a tilting platform whose angle of tilt is

deterz_ned by a motor which is driven by the doubly integrated output of

the accelerometer times the constant K. The transfer function relating

X to the applied acceleration has a characteristic equation of the form

p2 + K = 0 which indicate an undamped second order system having a

frequency of oscillation equal to K. If K were adjusted to equal
L

the oscillatory characteristics would be the same as a Schuler pendulum

_d would be said to be "Schuler tuned". With such a system the tilt angle

of the platform becomes equal to the angular arc that the platform has

t:'aversed over the Earth's surface. Thus if there were a ws_ to "remember"

the o[".ent.ation of the vertical at the starting point the position of the

:_'_,_r:_ could be obtained by measuring the angle between the instantaneous

vertical and the vertical at the start of the problem. This amgular position

cou!d _asily be related to latitude and longitude angles by alining the

X and Y accelerometers along and perpendicular to the meridian lines of

the Earth. Thus there are means of determining position both analytically

by suitable computer operations on the double integral of acceleration and

_eon_trically (or partly geometrically and partly analytically) by measuring

the _::-_.,-ntationof the vertical with respect to the reference coordinate

syste.

7.3.5 Hardware components.- To fully understand the mechanics of

inertial navigation it is desirable to understand the operation of some of

+_he _,aslc component_ -- the accelerometers, rate gyros, stable platforms,

CO_IpU+eZ'S _ etc.
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Figure "_-5 is a schematic drawing of the HIG type, slngle-de_ree-

of freedom gyroscope originally developed by the Instrumentation

Laboratory, MIT. Basically, the gyro consists of a spinning wheel driven

by an electric motorj mounted on preloaded ball bearings and contained in

a hermetically sealed can or float with shaft extensions. The float is

completely submerged in a viscous fluid which has the same average density

as the float and shaft. This serves to reduce friction about the axis

defined by the pivots design. Coaxial with the shaft is a signal generator

which gives a voltage proportional to the angular displacement of the float

relative to the case_ and a torque generator which can be used to apply

torque to the float.

The basic principle of operation of the gyro can be explained in

terms of the three axes shown in Figure 7-5. The spin reference axis lies

along the angular momentum vector (spin axis) of the wheel when the signal

6enerator output is zero. The output axis is normal to the spin reference

_w.is, and is the axis about which the float is free to turn. Th3 iny,:t

_xis is normal to the output axis and spin reference axis. The input

quantity to th.- in qtrument is an angular motion of the case, relative to

inertial space_ about the input axis. The resulting output is a movement

of the float relative to the case which results in a voltage from the signal

generator. Tae operation is explalned by the familiar physical fact that

when a torque is applied to a splnnlng wheel so as to change the d/rection

of its spin axis_ the spin axis tends to align itself with the torque vector.

Conversely, when the axis of a spinninE wheel is forcibly precessed or rotated_

the wheel through its bearings exerts a torque about an axis perpendicular to
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the axis of forced rotation. In the HIG gyro, movement of the case about

the input axis causes a force precession of the g_TO wheel about this axis.

The gyro wheel thus exerts a torque on the float about the output axis.

Initially_ this torque accelerates the float, but as the float gains angular

velocity, the viscous she_ _ torque reduces the acceleration to zero and the

float reaches a steady angular velocity. The gyro torque is then balanced

by the viscous shear torque and the output angular rate is proportional to

the input an_,±_r rate. The fact that the output signal is proportional

to the inte6ra3 of the input angular rate is the source of the term "

"Inte_'ating gy_'o". The Fjro thus serves as an attitude reference.

HIG gyros act _u_ precision angular motion sensors, rather than sources

of torques to overcome friction or unbalances. Normally, they have an

operating range of only a f_ de_rees ard to prevent various cross coupling

errors, input a_les should be kept small. Therefore, for inertial guidance

use, gyros are usually mounted on a platform or base which is servo-driven

to maintain the gyro outp, _ J.__ near a null. The platform thus remains

fixed in orientation relative to inertial space, or is rotated at a rate

_ .t_r_ined by torque generator input. A much simplified sk.'_tchof the one

degree of freedom stabilized platform is sh_.-a iu Fi_a_'e 7-6. A typical

three degree of freedom stabilized platform configuration is shown in

Figure 7-7.

Figure 7-8 is a schematic of a practical type of accelerometer

instrument based on the HIG gyro construction. The seismic mass exists in

the form of a pe_iu1_:: and the force generator is the torque generator. The

pickoff is the signal gener___or. Flotation virtually eliminates uncertainty
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friction torques at the pivots. Because of the pendulous mass, acceleration

of the instrument along the input axi_ creates a torque about the float

pivot axis. This torque causes rotation of the float and a consequent

signal generator voltage proportional to 8o. This voltage is used to

generate a current which is applied to the torque generator to give a

torque which "constrains" the pendulum and keeps 90 small. The current, I,

is thus proportional to acceleration along the input axis. The gain of the

feedback system must be kept quite high so that deflection of the pendulum

under high input acceleration is small. Otherwise, a "cross talk" torque

is developed which is proportional to the product of the acceleration along

the pendulous reference axis and the sine of the deflection angle 0o.

Inztr _ents of this type, called force feedback pendul_ns or constrained

pendulums, are available commercially. They are made with a wide variety

of dynamic range and frequency response.

Velocity and position are the quantities of interest in navigation,

rather tl_an acceleration. Increased accuracy and reliability may sometimes

be obtained by performing integration in the accelerometer. Basically, this

is done by making the force acting on the seismic mass proportional to a

rate of some kind. For instance_ the current fed to the torque generator in

Figure 7-8 _Ight be applied in pulses of constant area but variable rate.

Pulse rate is then proportional to acceleration and total number of pulses

to velocity. Another useful device _ one used by the Germans in the V-2

is th_ pendulous gyro accelercmeter (PGA). This instrument i8 a pendulum

in which the force generator is a gyroscopic element. Figure 7-9 is a
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schematic of such an Instrument based on the HIG gyro construction. The

output of the signal generator is fed to the servomotor which rotates the

gyro case about the input axis at a rate sucL that the torque developed

by the gyro ele_ent Just equals the pe_lulous tarque. The angular rate

of the gyro case is thus proportional to acceleration and the total angle

turned by the gyro case is proportional to velocity. As with the instru-

ment of Figure 7-8, the gain of the feedback loop must be kept high so

that. 8 is very small. The torque generator of the gyro can be used to

apply additional torques to the gyro float which add to the pe_lulous

torque. In this w_y, gravity may be a_ed to the thrust acceleration to

give true acceleration and velocity.

7.3.6 Typical configurations.- As is usually the case when engineers

are allowed some freedom in development oi" a system to do a particular Job

there are a number of configurations of inertial navigation systems in

operation or in the design stage. Figures 7-10, 7-11, and 7-12 present

three basic configurations of inertial navigation systems. These systems

differ aulte markedly _n the_ _A +n _ _ ÷_D _,,+_ ..,_+ store ÷_

reference coordinate system and determine the desired navigational data.

Figure 7-10 presents a three gimbal system in which the accelerometers

are mounted on the s_me platform as the rate gyros which are the heart of

the stable table. In this case the table is operated ala the Schuler tun_

pendulum so that one axis tracks the local vertical -- the reference

coordinate systems being store_ analytically in the computer. The stable

platform instr_,_nts the astronautic reference coordinate system by

prec _sslng the gyros. Navigation data is obtained as signals representing
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veloclty or acceleration measurements relative to the geocentric inertial

coordinate system of Figure 7-2 and converted into Earth data by computer

operations that convert the signals into the geocentric Earth coordinate

of Figure 7-2.

Figure 7-11 shows a five gimbal system in which the platform on which

the acceleremeter are mounted is Schuler tuned to track the local vertical

and instruments the astronautical reference system. The stable platform

with the rate gyros is stabilized in inertial space and thus instrument the

geocentric inertial coordinate system. This configuration allows direct

an_lar measures to determine positions on the Earth's surface relative

to the astronautical coordinate system.

The cc_figuration shown in Figure 7-12 is also a three gimbal system

where the accelercmeters are mounted on the stable table which is maintained

in inertial space. The platform instruments only the geocentric inertial

coordinate system and navigation data is obtained from computer operations.

7.4 How Well Does an Inertial Navigation System Work

An inherent disadvantage of an inertial navigation system is that the

errors in the increase with the problem time. Determini_ position by

doubly inte_ratiltE an acceleration measurement causes any error in measure-

ment to show up as a second power function of time. Because of this time

dependency of the errors the accuracy requirement of the accelercmeters and

the rate gyros used to provide stable table operation are much more stringent

than has been required of such instruments in previous mechanisms. For
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an IC_ type of operation the accuracy requirements of accelerometers and

rate gyros for each i000 foot of tolerable error are given as a function

of range in the graph presented in Figure 7-13.

The fact that the operation of inertial navigation systems (which

operates independent of outside signals) are based upon nonvariant phenomena

(Newton's laws of motions, etc) is an advantage in that any increase in

accuracy of the system components results in increased accuracy of the

overall system.

Using the principles of the Schuler pendulum enables the system errors

to be limited to a somewhat restricted type of oscillatory buildup -- at

least on the axes with respect to which the pendulum can be utilized. In

this case the amplitude of the error oscillation would be dependent upon a

combination of such factors as initial misalinement of the pendulum,

accelerometer bias signals and "cross talk" between acceleration components

along the other axes caused by misalinement of the stable table. Because

the angular drift of the stable table is a function of time the oscillating

limits of the computed errors of even a Schuler tuned system increase

with time. The principle of a Schuler tuned system has no application to

the vertical axis (altitude axis) and thus the errors in altitude measurement

would show a parabolic variation with time. These errors in altitude measure-

ment would also affect the measurements along the other axes where the

Schuler tuned principle is applied, because the error in altitude would

be an error in the effective length of the Pendulum and would cause the

period of oscillation to be in error as compared to a Schuler tuned system.

This difference in dynamics would cause additional errors in the measurement

of acceleration due to sensing gravity components.
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SECTION Vlll

GUIDANCE AND CONTROL OF SPACE V_ICLES

8,0 Introduction

Guidance as used herein is concerned with the obtaining of input

information required to achieve a desired trajectory (as related to

space flight), and flight control is concerned with the detailed control

of the attitude and velocity (both direction and magnitude) of the space

craft for the same purpose. Guidance and flight control systems have

re_ched a state of development where they appear capable from component

performance and accuracy standpoints of use in many types of space

operations. In spite of this apparent capability, much additional research

and development effort will be required in this area before any s_t of

routine space operations are possible. This situation is chiefly a result

of the rather extreme complexity of current high performance systems in

relation to the reliability of components and the long operating times

required in most space missions. Therefore, in regard to the systems

to be described, the problems primarily relate to improvements in reliability

and flexibility and reductions in complexity, size, weight, and p_er

requirements. Such improvements may occur in components, system configu-

rations, or in the invention of entirely new guidance and control concepts.

As the basis of discussion of guidance and control systems, we will

break down space missions into their various phases such as launching,

orbiting, space trajectories, and re-entry. For each mission phase, an

attempt will be made to describe the operational concepts; the guidance

and control equipment used, contemplated or needed; and the problem areas.
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8.i Launching

As currently envisioned the earth launch phase of most space

operations will closely resemble the launch operation of ballistic missiles.

A typical launch trajectory is shownin figure 8-1. A multi-staged

vehicle will lift off approximately vertically and will be stabilized in

the attitude through use of an automatic flight control. After a period

of vertical flieht the missile will perform an unguided gravity turn by

programming the missile to stabilize at tilted attitudes maintaining

near zero an_le of attack. There also may be periods of unguided coast-

ing following burnout of the various stages. Active _uidance will take

place in connection with intermediate stages and perhaps in connection

with the final stage, although in somecurrent satellite vehicles the

final stages are unguided and stabilized through spinning. The main

purpose of the _guidanceis to control accurately the direction of the

velocity vector at burnout of the last guided stage. For unguided final

stages it is necessary also that the attitude of stage be closely controlled

at firinc and regulated during burning. Another important guidance function

is to accurately control the velocity cutoff of the final stage. A some-

what less critical guidance function is the control of the spacial or

_eogrschic position of the vehicle at final stage cutoff.

A numberof distinct types of _uidance and flight control equipment

_re currently used in the performance of the functions Just discussed.

The crimary types involve either inertial sensing _ electromagnetic

tracking. Practically all the attitude systems used for launch control

incorporate inertial sensors (gyroscopes and linear accelerometers).

3Z6<
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h block diagram of a typical attiutde control system is presented in

figure 8-2. In an elementary system, the attitude stabilization may

be obtained from three single degrees of freedom integrating rate

gyros, orthogonally mounted on the body. A high gain control loop is

used to accurately slave the missile attitude to the gyro references in

order to avoid gyro coupling effects. In fact, less than ten degrees of

gyro gimbal freedom is usually provided.

The chief problem associated with these high gain attiutde control

systems concerns the avoidance of dynamic instabilities resulting from

coupling between the control system and the structural or fuel sloshing

molions. In most cases the booster configuration is controlled by Jet

deflection and the control _ains must be set high enough to stabilize the

system under maximum q conditions (where the configuration, s aerodynamic

instability is greatest). This requirement results in an excess in

stability near lift off and the short period frequency under this condition

is fairly high (say 1 cycle per second). Unfortunately, the full fuel

configuration results in the lowest frequency condition of the structural

modes, and the fundamental fuselage bending mode may have a frequency

of just a few cycles a second. An example of the bending modes and their

frequency distribution is sho_n in figure 8-3. The frequency of the fuel

motion in the missile may be even lower, and this motion also becomes

critical some time after lift off. In most liquid fuel rockets it has

been necessary to use some baffling in order to provide damping tc the

fuel motions. If the open loop frequency response of the control system
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is sufficiently high it is possible to add damping to the lowest frequency

modes by control action. This approach requires careful choice of sensor

location along the body in order to obtain proper phasing and/or requires

the use of electronic shaping networks for the same purpose. (See

figure 8-2.)

These techniques are not the complete solution to the problem, however,

because there are always present higher frequency structural modes which

may be excited by control action. In fact, in one case it was necessary

to reduce the control response by the order of 1OO decibels from its

static value in order to avoid trouble with a moderately high frequency

mode (only a few octaves above the first-bending mode). This reduction

is ordinarily accomplished by electronic filters having a very sharp

response cutoff or by the use of notched filters at each critical frequency.

One problem here is that the frequency and mode shape of these oscillations

vary as the fuel is used. (See figure 8-2.) Deliberate use of certain

nonlinearities in the control system is sometimes helpful. For example,

small amounts of friction or hysteresis may prevent the control from

responding to small-amplitude high-frequency signals generated within

the structure. Of course the basic control mode will have a limit cycle

oscillation under such a condition, but this oscillation may be small

enough to be tolerable.

The use of large solid propellants as first stage boosters would

obviate the fuel sloshin_ probiem, and for this and other reasons, they

will undoubtedly be used. These solid engines, however, also require

328<
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solution of certain problems. These problems include the control of

thrust direction without high actuating forces (particularly friction)

and the accurate control of thrust cutoff. A related but somewhat more

secondary problem is that of thrust modulation cf these engines.

The attiutde control systems .just discussed (using body mounted gryos)

can also be used as an inertial guidance system for launching space vehicles.

The boosters would be stabilized in roll and yaw and the pitch gyro

reference would be programmed so that the missile attitude would follow

a trajectory of the type outlined previously. If the thrust also could

be _ccurately controlled to a desired program this attitude system would

be all that is needed to achieve a desired launch trajectory; however,

because the thrust cannot be programmed with the required accuracy an

integrating accelerometer is mounted on the body to measure accelerations

along the longitudinal axis (mean thrust direction) and with a gravity

correction established from the pitch attitude program the direction or

magnitude of the velocity vector can be determined. Guidance systems of

this simple type have been used to launch satellites and can be used in

other space operations where angle inaccuracies of the order of one-half

degree are allowed.

If greater precision is required from an inertial system, the three

gyros can be mounted on a gimballed platform which is slaved to the

reference nulls of these gyros. Three orthogonally located integrating

acceierometers c_n be mounted on this platform to establish the velocitity.

The superior _ccurncy of this system results from the fact that the

coordinates of the platform can be maintained with greater accuracy _n



8-6

those of the missile itself in addition to the fact that all three

components of accelerations are measured.

The chief problems with inertial systems relate to initial align-

ment (settin_ in the proper initial conditions), drift in the platform

orientation, and inaccuracies in the integration of the acceleration.

The last two problems have received much attention and components have

been developed with extremely _ood predicted precision. The word "predicted"

is used because one of the re_l problems associated with this equipment

is that of testin_ in the proper environment. The high steady accelera-

tions associated with the launch condition plus the vibration environment

obviously introduce structural deflections, unbalance, etc. in excess of

those encountered in a laboratory environment. On the other hand, the

extreme theoretical precision associated with the zero g environment of

space flight cannot be checked in a ground based laboratory.

As has been implied, the errors of an inertial guidance system increase

with time of flight. It is possible to get velocity magnitude and direction

information from other types of guidance systems wherein errors are pre-

dominately a function of distance. Into this category fall a number of

ground based equipment using the propagation properties of electromagnetic

waves. Perhaps the best known device of this class isthe conical scan

tr_ckinz radar. In this system an indication of the line of sight to the

target is obtained as shown in figure 8-4. The center of the lobes of

transmitted energy is made to rotate in a conical pattern and the

direction to the target is determined by the relative strengths of the

<
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return signal durin_ various portions of the scan. On the basis of this

information the tracking head (antenna) is driven to keep pointing at the

target. Angle information is taken right off the tracking head gimbals.

Range information is obtained by determining the time interval between

the transmitted pulses and their reflected return.

The chief problems with radar tracking systems are achievement of

the desired range capability and noise in the angle tracking system.

This noise problem is aggravated in the launching problem because it is

desired to obtain accurate velocity information and this involves

differentiation of the basic positional information. To the radar the

appearance of the target somewhat resembles the appearance of a crystal

chandelier to eye. Slight motions cause the bright areas to shift

around. In the case of the radar there is a tendency to track at random

vsric_s o_rts of the missile. This condition is aggravated in the case

of the conical scan radar by the fact that it depends for angle information

on the comparison of the return signal strengths at slightly different

times (scan positions). The r2dsr, therefore, cannot distinguish between

a general fading of the return from a difference due to the angle error.

Fading at the scan frequency can cause the radar to move entirely off the

target.

The fading effect or angle tracking can be eliminated by using a

monopulse radar in which the return signal strength comparison is made

between a single pulse simultaneously lobed in slightly different directions.

The noise due to glint is still present in this system, however. Another
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way to improve radar position information is to use two (or more) radars

in conjunction with long and accurately measured base lines• In this case

the positional information can be obtained from the range measurements

through use of triangulation techniques. For extremely large ranges the

base lines must be proportionately larger to be effective. For flights

deep in solar space base lines between two or three 22,000 mile satellites

have been suggested.

The problem of range extension of radars and other electromagnetic

signalin_ devices is large one of increasing the peak transmitted power

and increasin_ the signal gstherin_ capabilities of the receiver. The

last requirement may dictate the use of extremely large antennas (the

size of a football field or even larger). Range extension can also be

improved through use of a beacon (transponder) in the target. Use of a

beacon may also improve the angle tracking accuracy.

Another factor which may affect the propogstion of electromagnetic

radiation between the earth and vehicles in space is the presence of the

inosphere. It is well known that this imnized layer reflects electromag-

netic waves; however, it is the writer's understanding that the ionosphere

will not have much effect on high frequency waves• Refraction of the

waves which result from this source will produce small angle tracking

error s •

Because during the launch phase the guidance accuracy is most critical

to Velocity errors, it is desirable to obtain the velocity information

in a more direct manner than by the differentiation of positioK_ infcrmation.

Doppler radar con accomplish thi_ objective. As its nr e implie s its
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operation depends on a measurement of the doppler frequency shift between

transmitted and reflected waves which results from the targets velocity.

The frequency shift as a fraction of the transmitted frequency is directly

proportioned to the target velocity radial to the transmitter and inversely

proportional to the velocity of propogation of the radiation. Because the

velocity of propogation of electromagnetic radiation is extremely high

(186,OOO miles per second) the frequency shift must be measured with

extreme accuracy. If the velocity of a vehicle is desired to one hundred

feet per second the frequency must be measured to roughly one part in ten

million. Thus one of the chief problems associated with the use of doppler

systems for space flight is the achievement of ultra stable oscillators.

Another problem connected with the use of doppler techniques is that only

the radial component of velocity is measured@ This problem can be cir-

cumvented through use of multiple installations on accurate base lines.

The total velocity can be determined from such an arrangement.

Some of the more sophisticated methods of launch guidance do not

depend on the use of a single type of equipment but endeavor to make

use of the best features of two or more types. For example, a tracking

r_dar might be used for long period information because it is not subject

to the drift problems of the inertial system; however, an inertial system

might be used at the same time to provide short period guidance. This

arrangement would allow very heavy smoothing (filtering) to be applied

to the radar data in order to eliminate noise. Similarly a doppler

system can be used for velocity information in conjunction with use of

333 <
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a tracking radar system for position information. This arrangement avoids

the noise problems associated with data differentiation and also avoids

the drift problems associated with data integretion.

8.2 Orbiting the Earth

Once a vehicle hes been established in orbit the complexion of the

guidance problem changes. Motions about the body axis are essentially

neutrally stable (no inherent modes of motion exist), and in most cases,

there are no significant external disturbances. It is necessary to apply

only sm_ll control moments to reduce any initial angular velocities and

to keep the vehicle pointed in a particular manner (if desired). Unless

the vehicle is launched into an orbit close to the earth where the effect

of aerodynamic drag may be significant the trajectory is stable and

predictable and desired minor modification to the orbit can be made by

relatively small thrust kicks in the appropriate direction and at the

appropriate point.

On the other hand the orbital phase of the operation may extend

over very long periods of time and cover large distances over the surface

of the earth. The first factor mentioned dictates extreme emphasis on

simplicity, reliability, drift and low power consumotion of the guidance

and control systems to be used. The second factor implies that on-board

guidance and control systems wculd be desirable. The ground based systems

described in connection with the launch operation (and other types of

ground systems) can and are being used in connection with orbital

operations but their use is limited by the extreme size of the network

req_[red for complete _rface coverage.
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Most advanced satellite missions require some sort of attitude

control. Examples of such missions are earth reconnaissance missions

and stellar observation missions. Some of the most elementary attitude

control systems include the sensing of gravitation or centrifugal force

gradients by control of the vehicle geometry (for earth observation) and

the use of solar photon sails (for solar observation). The use of a drag

device for stabilization is possible in near earth short-term orbits.

These schemes are characterized by extremely small restoring moments and

their use is dependent upon the response times achievable as compared to

those required in s particular operation. Their practicality is also

depen4ent on the magnitude of distrubances enc_mtered both externally

end internally. Another type of simple altitude system which have been

used is simply spinnin_ the entire Vehicle. The attitude stabilization

in this c_se is with respect to fixed space.

Optical systems appear well suited for orbit attitude control and

other guidance functions in space. These systems are capable of very

high resolution and are well adapted to use by the human. This combination

is felt by many to add up to highly reliable system. Attitude stabilization

with respect to the earth can be accomplished by a 360 ° scan of the horizon.

Stabilization with respect to the sun, planets, or stars can be obtained

through use of an astro tracker. Systems of this type require a means

for conversion of the sensed quantities into control moments. This

conversion involves a human pilot or autopilot and suitable moment producing

devices. Such devices are now envisioned as inertia wheels or small reaction
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jets. Problems associated with such systems are largely in the areas

of design information or development. More information is needed on

disturbances (particularly internal), on power requirements (novel power

sources need to be developed), on the design of small controllable

rockets or hiCh reliability, and on the reliability of components and

subsystems in general.

In order to perform such functions as orbit transfer or to re-enter

from an orbit, information on such parameters as geocentric radius

(altitude), velocity, and position. These measurements could be made

using inertial platforms of the type already described. The inertial

system has an advantage in this and other space flight applications

in that it is a self-contained on-board system. It does appear, however,

that some backup system may be required in all but short-term operations

because of the long-period drifts associated with the inertial systems.

The ground-based systems previously described could also be used in

orbit determination. In addition, another type of ground-based system is

used for sucE measurements. This system involves the determination of

th_ direction of arrival of a wave front transmitted from the target.

The direction to the target is along a line normal to this front. A

phase comparison between the signal received at stations alon_ known

base lines is used to establish the direction of arrival of the wave

front. This type of equipment has the advantage of being basically

D_sive in n_ture. It is capable of obtaining position information

on any tarter for which a transmitted signal can be detected. It does,

however, require a f_ir]y elaborate ground range communication and

35.6<



8-13

computing system. Attitude of s satellite with respect to a ground station

can also be obtained using such equipment provided the d6,ice for measuring

angle of arrival is aboard the satellite.

Optical systems might also be used to advantage in obtaining velocity

and position information as illustrated in figure 8-5. For a satellite

maintaining a fixed orientation with respect to the earth (as, for example,

by means of a horizon scanner) the spacial velocity parallel to the earth,s

surface can be obtained from rate gyros providing the geometric radius

is known (V = R_). This radius measurement might be obtained by stadia-

metric methods using the horizon scanner or by a radar altimeter. Similarly,

instantaneous velocity and position with respect to a point on the earth

could be obtained optically for an attitude stabilized satellite by

topographic identification and drift measurement.

It should be mentioned that the close in phases of merging of orbital

position of two vehicles might very possible be accomplished by homing

techniques. The type of guidance system might be much the same as those

developed for air-to-air or surface-to-air missiles and could employ

o_tical, radar or infra red tracking.

8.3 Space Travel

The guidance and control devices already described for the orbiting

vehicle can also be applied to a vehicle traveling in cislunar space or

at even greater distances. There is likely to be one difference, however.

_lthou_h guidance of vehicles in initial orbiting near the earth may often

be accomplished with a fairly elementary computation routine, the trajectories
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in space will dictate the use of fairly complex computers in connection

with the guidance function. Coupled with long travel time, this computer

presents a serious reliability problem. An example is given in a paper

by Xenakis in which a circumnavigating lunar trip ending in a re-entry

to the earth's atmosphere was considered. The trip time was roughly ten

days. The system consisted of an astro tracking system, rate gryo control,

inertia wheels, and a computer. The computer was the dominating influence

in lowering the probability of success. Using failure rate data for a

modern airborne fire control computer but only considering one-tenth

the computer capacity, the probability of success of this mission was

0.22. Replacing the computer by a human pilot raised the probability

of success to O.70; however, the probability of success of the computer

equipped system could be raised to 0.64 through use of intermittent

operation. Even with this intermittent system, the probability of success

of a one way trip to Mars would be low (less than one in twenty) because

of the long travel time assumed (2400 hours).

Guidance accuracy requirements for such missions as lunar impact,

lunar circumnavigation, or large radius lunar orbits are not great. Angle

accuracies of the order of one-half degree would be required, however,

if return to the surface of the earth is desired much higher precision

is required. If a braking ellipse re-entry is used, a first pass

perigee altitude precision of about 20,000 feet appears to be required.

At 20,000 miles from perigee the angle accuracy would have to be about

0.02 degrees and the velocity accuracy would have to be about lO fps to

35 S<
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meet this requirement. Thus a need is indicated for some means of limited

corrective control (thrust control) as the perigee point iu approached.

8.h Atmosphere Re-entry

The re-entry into the atmosphere of a space vehicle will be made at

a shallow angle in order to limit aerodynamic heating rates to acceptable

values. In general regulation of re-entry angle and position will be

accomplished by small amounts of retro-thrust. The configurations considered

for re-entry vehicle vary widely and include balloons, parachutes, ballistic

re-entry capsules, and several varieties of winged vehicles. The winged

vehicles will probably be operated at high angles of attack (thirty to

ninety degrees) in order to limit the heating rates and/or the total

heat input. Ballistic re-entry bodies will be high drag configurations,

but ultimately might utilize small amounts of lift for maneuvering.

The significant addition to the guidance and control problem here as

compared to other phases of the mission is the importance of aerodynamic

lift, drag, stability, and control. Blunt (approximately flat faced)

.................... wu_o or wiz_ed v_:_Ac,es at extreme angles

of attack (approaching ninety degrees) are characterized by high drag,

negative lift-curve slopes, and very small amounts of static stabi]ity.

_ctually st angles of attack approaching ninety degrees the resultant

force coefficient shows little variation with angle of attack both as

to itm magnitude and as to its direction with respect to the body.

The accelermtion time history during re-entry, therefore is controlled

;iLg<
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by controlling the trajectory through the atmosphere. Because no immediate

effect on the accelerations results from control action piloting problems

are like]y to occur. Adding to this difficulty is the effect of the

necative lift-curve slope. The vehicle must be pitched down in order

to apply lift in an upward direction (pull out).

Another problem common to all re-entry configurations is low damping

of the short-period modes. In fact, the negative lift-curve slope associ-

ated with the blunt configurations may make the dampir_ slightly negative

in this case. In general, however, the amplitude of this oscillatory

motion tends to decrease during the re-entry because of the increasing

density. The decrease in amplitude is approximately proportional to the

decrease in period because in the absence of continued disturbances the

energy in the oscillation will remain about constant. These conditions

result in the maximum angular accelerations increasing in proportion to

the increase in period. In the case of the blunt body, these motions

sho_]d not produce significant transverse accelerations nor oscillations

in the total accelerations for the reasons given previously. This result

would not exist for win_ vehicles re-entry at angles of attack of 35 or

]_5 de,Fees.

The winged vehicles operating in the range of h5 degrees angle of

attack may _iso encounter problems associ*ted with strong aerodynamic

and inertial coupling of the moments about one axis due to motions about

another. This problem is particularly difficult if the angle of attack

must be varied. Although the effects might be compensated in the design

(or by automatic means for one angle of attack, such compensaticn would

,iO <
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not be possible over a range of angles of attack. Control deflection

coupling has been found p_rticularly bothersome. In certain instances

the moN_ents produced about the control axis has been smaller than the

moments produced about another axis.

Added to the perhaps more subtle problems previously mentioned, there

are the problems relating to the rapid changes in control effectiveness,

static stability, trim, and response associated with the rapid variations

in _sch number and dynamic pressure during these re-entry maneuvers. These

characteristics will require considerable adaptive capabi]itieson the

part of the human pilot or the _utopilot.
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SECTION IX

ENEMENTS OF ROCKET PROPULSION

9.1 History of Rockets

The history of rockets will be briefly discussed. Only those few

n_mes and dates which are considered sufficient for a brief outline of the

subject will be mentioned.

The first recorded use of the rocket occurred in 1232 A.D. when the

Mongol, Ogadai, the third son of Genghis Khan, began his attack on Kaifeng,

capital of Honan Province in China. Rockets were used by the defenders of

Kaifeng and were described as fire arrows. They were nothing more than

rockets attached to arrows to increase their range.

It is probable that the rocket principle was known to the Greeks

several centuries earlier, possibly as far back as the 8th century. Going

back still farther the Chinese have been credited by some with the use of

_Jnpowder rockets as early as several centuries B.C. Of course, all

propellants used in those times were solid. In fact, gunpowder or its

variations was the only known type of rocket propellant until early in the

2Oth century.

Assuming the 13th century as the starting point in rocket history,

the most rapid advances were made in the Orient during the next 500 years.

The Indian soldiers used large numbers of rockets with telling effect

against British troops during the Indian campaigns. Their success aroused

the interest of many in England, one in particular being Sir William Congreve.

He began earnest study in 1804. His rockets were used against Napoleon
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and also against American troops in the War of 1812.... whose red glare

is mentioned in the Star-Spangled Banner.

The long, trailing stick on the rocket which was used for stability

was eliminated around the middle of the 19th century. It was replaced by

small curved vanes built into the path of the jet which were able to spin-

stabilize the rocket. This idea of spin stability was also applied to

artillery shells by rifling the bores. By the end of the 19th century

the rocket was replaced by artillery because of this increased accuracy due

to rifling and because of rapid dewelopments made whereby the range of the

artillery was greatly increased.

In 1903 Ziolkovsky of Russia made a definite proposal for a liquid-

propellant rocket unit in an article dealing with the possibility of rocket

space travel. Nevertheless, credit for rebirth of rockets in the 20th

century is generally given to Dr. Robert Goddard of Massachusetts. Although

the basic idea of utilizing the rocket principle to attain extreme altitudes

had been conceived in the middle of the 18th century, Dr. Goddard conducted

the first scientific experiments along these lines. He became interested

in the subject in 1909 and began experiments as early as 1915 with solid

propellants. Financial backing for his experiments was provided by the

S_ithsonian Institution who published his report, "A Method of Reaching

Extreme Altitudes" in 1919, the first publication on this subject. In it,

Dr. Goddard claimed it was theoretically possible to send a rocket to the

moon. In 1920, Goddard saw the need for liquid-propelled rockets in order

to obtain the required speeds, altitudes, and endurance. In 1926 he succeeded
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in making the first flight with a liquid-propelled rocket, and in 1932,

the first flight of a rocket stabilized by a small gyroscope.

In the meantime, shortly after Goddard had renewed the interest in

rockets others from all over the world followed with work on the subject,

notable among these being Hermann Oberth in Germany. Except for Goddard,

the bulk of rocket research in the first half of the 2Oth century was

centered in Germany.

The rocket was used in World War I, but not as an offensive weapon.

In _brld War II many different uses of the rocket as a major weapon were

made by each of the powers. Since World War II, the application of rocket

Fower has been rapidly accelerated as exemplified by the development of

intercontinental ballistic missiles and the launching of the artificial

satellites of the earth.

9.2 Rocket Principles

An attempt will be made to derive and explain a few of the more common

quantities associated with rocket motors.

9.2.1 Equation for the Acceleration of a Rocket.

The propelling action of a rocket motor is derived from the generation

of large quantities of gases by the chemical reaction of suitable

proepllants within the rocket motor. The force which is produced by the

generation of the gases is called thrust and is the basic performance

parameter of a rocket since it determines the speed and distance which

can be obtained.
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The equation for the acceleration of a rocket can be derived from a

special principle of the momentum theorem which takes into account the

fact that a burning rocket is continuously losing part of its mass. This

principle states that for a system of S particles, the vector sum of all

the exterior forces acting on S is equal to the time rate of change of the

total momentum of S plus the rate at which momentum is being transferred

out of $ by the particles that are leaving S.

In deriving the equation for the rocket acceleration consider the

rocket shown below

l_-----Nozzle exit
i

where the rocket system consists of the metal parts of the rocket, the

unburnt fuel, and the gas inside the geometric surface. The momentum of

the _-stem is equal to the mass of the system times its velocity, that is,

My. The rate at which the departing particles remove momentum from the

system is Just the rate at which momentum crosses the exit surface. If the

velocity of the g_s relative to the rocket at the exit of the nozzle is

re, then the gas crossing the exit surface has a velocity of w - ve. If

is the rate at which gas is streaming through the exit surface, then the

Jet is taking momentum from the system at the rate of m(v - re) , and, by

the above principle
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_- Fexter.al(t) = a-_(My) + m (V-re)

The rate of gas streamin_ through the exit _ which is the rate at which

the fuel is bein_ burnt must equal the rate of change in mass of the system.

Therefore

_E Fexter.al(_) = MG - _v

= MG - _v e

• &(v-ve)

or

MG : _va ÷ _Fexternaj (t)

9.2,2 Derivation of the Thrust of a Rocket,

Among the external forces acting on the system, as shown in equation

(9-1), are the gas pressures over the surface of the system. The gas

pressures consist of atmospheric pressure over the outside of the rocket

and the Jet pressure over the exit surface.

The force due to the jet pressure is PeAe where Pe is the Jet

pressure at the exit surface and Ae is the area of the exit plane. The

etmospheric pressure is composed of the static atmospheric pressure plus

the aerodynamic forces due to motion through the air. The force due to

the static atmospheric pressure over the outside of the rocket is just the

(9-1)

 Si<
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negative of the force that would be produced by static atmospheric pressure

over the exit surface. (This is obtained by summing up all the forces due

to atmospheric pressure acting on the rocket exterior excluding the nozzle

exit surface.) Therefore, in ten-ms of the Jet, the force due to static

atmospheric pressure over the outside of the rocket is -PaAe where Pa

is the static atmospheric pressure.

As previously stated the remaining forces due to atmospheric pressure

are due to motion through the air and are considered as aerodynamic forces

F a •

Collecting the above and other external forces the total external

force is

_:Fexter.al ('-,.)= peAa- p_A e - Fa - Mclx - F (9-2)

The term Mgx is the force due to gravity and the term F includes all

other exterior forces, for instance, if the rocket is towing out a line, etc.

From equation (9-1) then

M_/ = rove + (Pe" Pdi)Ae - Fa -McJx - F (9-3)

Now consider a rocket held motionless by a test stand. The term M_

becomes zero since v - O. Also, there are no aerodynamic forces on the

stationary rocket, so that Fa = O. If the rocket is held in a horizontal

position, then Mg x a O. Thus, the term F in equation (9-3) becomes the

thrast, _s measured by the thrust gage•
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or

F -- + (Pe- P,)Ae

(9-4)

(9-5)

where & is the weight rate of propellant flow. The thrust is composed of

two terms. The first term is known as the momentum thrust. The second

term is known as the oressnre thrust and consists of the product of the

cross-sectional area of the exhaust _iet and the difference between the

exhaust oressure an_i the atmospheric pressure. From equation (9-4) it is

evident that a rocket exhaust nozzle is usually designed so that the exhaust

_essure is equal to or sli_htl7 hi,hem than the atmospheric pressure.

If the atmospheric pressure is equal to the exhaust pressure, the thrust

is

F : ("_Ig) Ve

and _iwes a maxim_nm thrnlst for a givAn eh_mbe_ pre_su_ The rocket no_z!e

design which permits the expansion of the propellant products to the same

pressure of the surrounding fluid is referred to as the rocket nozzle

with o_timum expansion retio.

For underexpsnsion (that is, when the exhaust gas pressure is higher

than atmospheric pressure) a portion of the energy of the _ases is not

converte_ into kinetic energy and is lost as far as thrust development is

concerned.
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If a motor is to operate at different altitudes, the area ratio

(Aexit/Athroat) must be selected so that it is the best compromise for

the operating conditions. Usually, the nozzle is designed so that it will

operate with a slight underexpansion at the most significant operating

altitude. In this case the thrust at sea level would be reduced. The German

V-2 is a typical example and its thrust variation with altitude is shown below.
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9.2.3 Effective Exhaust Velocity.

In order to explain the meaning of effective exhaust velocity reference

can be made to equation (9-5) which is

F : (W/9)v e + (Pc" Pa)Ae

The term effective exhaust velocity is introduced as a convenient way of

definin_ the thrust in the above equation only in terms of the propellant

weight rate of flow and an exhaust velocity which is called the effective

exhaust velocity. The effective exhaust velocity c is defined as

. .F" I'Pe -Pa)Ae9 (9-6)
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(_en

velocity of the propellant Eases

velocity, then

Pe = Pa' the effective exhaust velocity c is equal to the exhaust

With this definition of exhaustVe.)

F - cC '/9) (9-7)

T?%_ical values for a rocket might be

Te - 6,200 ft/sec

c - 7,300 ft/sec

Effective exhaust velocity depends on the atmospheric pressure (see equation

(9-6)) ;therefcre, when values of effective exhaust velocity are stated

the corresponding atmospheric pressure is also stated. Thus the use of

effective exhaust velccity relates the performance or thrust of a rocket

on a standard basis and one rocket can be easily compared with another rocket.

In the actual testin_ of a rocket motor to determine its performance

the v_lue of the effective exhaust velocity can be easily determined from

m__s_r_, _no_ of the thrust and propellant flow, as is shown below.

The tctal weight of the propellants consumed is

Wp : _/At

Then from equation (9-7_

(9-8)

cr

c: I g
(9-9)
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where I is called the impulse in pound-seconds and is the integral of the

thrust vs. time duration curve. (See below.)

-a

e_

4J

L
r-

/

k_

l< Duration, At

The use of impulse is handy, especially for solid propellant rockets where

it is often difficult to measure the propellant flow rate accurately.

The effective exhaust velocity is one of the most important criteria

of rocket-motor performance and a continual effort is being made to increase

its value.

If the thermodynamic properties of the propellant gases are known,

the effective exhaust velocity can be calculated from the following equation.

C --

(9-1o)
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where Pc is the combustion chamber pressure

k is the specific heat ratio

R is the gas constant per unit weight and is equal to the universal

gas constant (1,544 ft-lb/mole o_) divided by the molecular

weight (ib/mole)

Tc is the chamber temperature, OR

P_2
is the expansion ratio

Pc

_ctual!y, equation (9-10) gives the effective exhaust velocity for the

optimum expansion ratio, that is, Pe = Pa" In the above equation the

specific-he_t ratio and expansion ratio can exert only a minor influence

on the magnitude of the effective exhaust velocity. Therefore,

For gases _enersted by the liquid propellants currently being used, the values

of R vary from 60 to 80. Combustion chamber temperatures range from

3500°R to 6000OR. A typical chamber pressure is 300 psia, while some are

as high ss 500 psia. Rockets are generally designed for a constant chamber

pressure.

9.2.4 _pecific Impulse.

Rocket motor performance is frequency expressed in terms of specific

impulse of the propellants. This is the impulse delivered per unit weight

of propellant consumption.
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is = F-T--
W (9-12)

In terms of the effective exhaust velocity (equation (9-6)) which is

the specific impulse is

. C
m

Is- s

Therefore, it is seen that specific impulse is merely another way of

expressing rocket performance and is convenient to use when it is possible

to measure the propellant flow rate and thrust (usually in liquid-propellant

rockets).

In the figure below is a typical calculated performance of a liquid

oxygen-gasoline propellant system.

(9-13)

(D000

3000

4000

,_ 3000

" _40

oE_ _zo
:J

"_ 200

v) I i I I I I

1.5 Z.0 Z.._ 3.0

Mixture ratio,

0

J.z "_

I,I _

z,

zo g
"3

u
tu

ox_dizer wt.

_el wt.



9-13

It is seen that one definite mixture ratio (oxidizer weight to fuel weight)

_ives an optimum rocket performance. This optimum mixture ratio occurs

usually at a value which is richer in fuel than the stoichiometric mixture

ratio, at which al! the fuel is theoretically completely oxidized and the

flame temperature is a maximum. In general, the mixture ratio of the rocket

is so selected as to be very close to the optimum value. In liquid pro-

pellant rockets this ratio determines the proportions of the propellant tank

volumes and in solid propellant rockets it determines the proportions of

oxidizer and fuel to be used during propellant preparation.

9.2.5 Propulsive Efficiency.

There are various efficiencies defined in connection with rockets.

These are not commonly used in designing rockets; however, they permit

an understanding of the energy balance of a rocket. One efficiency, _own

as the propulsive efficiency, will now be briefly discussed.

The propulsive efficiency determines how much of the kinetic energy

of the exhaust jet is useful for propellin_ a vehicle. It is defined as

vehicle energy

_P = vehicle energy + residual kinetic jet energy

and since

Fv

I

v

(9-14)
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where v is the vehicle velocity and c is the effective exhaust velocity.

The term (c-v) is the absolute exit velocity of the propellant gases.

The following figure shows the instantaneous propulsive efficiency of the

rocket jet as a function of the velocity ratio !.
C

_,_ I00

_. 80

,-_ 60

o 40
e_

_ 20
9.
0
• 0

0. 0

--....

I.o 2.O

Velocity rat;o, ¢

3.0

The propulsive efficiency is a maximum when the forward vehicle velocity

is equal to the exhaust velocity, that is, when the absolute velocity of

the jet is zero. This means that the total available kinetic energy is

bein_ used to propel the vehicle. Since the object of a rocket is usually

to attain as high a flight speed as possible the speed is constantly

increasing, thus the propulsive efficiency varies during the flight of a

rocket. It is apparent from the figure shown above that the rocket is an

inefficient propulsion system at speeds comparable to those of our present-

d_y airplanes.

&GO<
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9.2.6 Idesl Velocity of a Rocket.

If the external forces _Fexternal (t)

then

MY =

in equation (9-1) are neglected,

(9-15)

From this very useful expression the ideal velocity of the rocket can be

obtained; that is, the speed the rocket would attain neglecting the effect

of draz or gravity. The effective exhaust velocity c is assumed to be

ccnstsnt. The ideal velocity is determined from equation (9-15) by first

rememberin_ that

so that

d Mc
M_ :-aT

Multiclyin_ through by dt, then

or

M dv : - c aM

AM
dv : -c -----:-

M

Both sides of the equation can be integrated over the period of burning as

shown below

_f _( dMav : -c

v_ : - c (L. M; - I., Mo)

= CLn Mo M o : v._or" e '_

Mf Mf
(9-16)

C.G:i<
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where vf is the final velocity and M o and Mf are the masses of the

rocket (plus fuel) at the beginning and end of burning, respectively. It

should be noted that for equation (9-16) the velocity is given in terms of

the final velocity reached for a rocket started initially from rest. If

the rocket is at some speed at the beginning of firing, then the vf term

becomes incremental velocity Av.

_quation (9-16) can be expressed in terms of the propellant mass ratio S.

Vf or AV = - cL.(I-_) (9-17)

where _ is the ratio of the mass of the propellant to the gross mass of the

rocket Mp

Mo

Since the end result of a rocket is that of delivering a useful load

or pay load it is convenient to express equation (9-17) in terms of a

parameter known as the pay-load ratio __Ms where MZ is the mass of the

M o

pay load• By introducing an acditional parameter e, called the structural

factor, and by substituting this term along with the pay-load ratio into

equation (9-17) the expression for the velocity becomes

or = cL. [¢(x), x]

where k is the pay-load ratio M_

M o

and

Mf M;

M_ + M.p M o - M z

(9-i8)
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such that

= (,-x)(,-¢)

It should be noted that Mf does not include the mass o£ the pay ]oad.

Although these results for ideal conditions cannot be applied directly,

they give an approximation of the maximum speed which can be expected for

a Riven rocket. The difference between the "ideal" and actual performance

varies for every rocket. A small fireworks rocket may actually only attain

2 or 3 percent of this "ideal" performance. The German V-2 attained some

70 oercent of its ideal performance. The larger the rocket the smaller the

difference between the two values; a rocket capable of overcoming the whole

gravitational field of the earth would probably attain better than 95

percent of "ideal" performance.

9.2.7 Multiple-Step Rockets.

It is obTious from equation (9-17) that very high final velocities

cannot be obtained with a single rocket because the propellant mass ratio

Mp

M_ that would be required becomes physically impossible using present-day

propellants. The disadvantage of a single rocket in regard to attaining

high velocities lies in the fact that the entire empty mass of the rocket

must be continually accelerated even after the major portion of that empty

moss is no lonFer useful. For this reason the step principle was conceived

in th_i a rocket consists of several steps, each of which operates independently.

As the propellant is exhausted in each step, the step is separated from the

rccket and propu/sion for the remaining unit is provided by the next step.
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Mo X

I

This principle is briefly discussed below by taking a three-step rocket as

an example. In order to avoid confusion, the individual rockets are defined

herein as the steps and the combinations of the steps are referred to as

sub-rockets.

propellant mass

empt_ mass
(excl.ain 9 pay load)

pay- load ratio structuraJ _actor propellant mass Patio

Monz
X= = --

Mo x

M_j Mp,

Mr, -I- Mp, Mo x

_ Mf z _: _ M Pz
(:= Mfz+ Mp 2 M:=

£'- Mfa _J.r: "_
Mfa t- Mp3 Moo

: 564<
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In the case of a step rocket the ideal velocities of the sub-rockets

may be added, so that the total ideal velocity of the three-step rocket

shown above is

- c,,,_.['_=(,-_.=)+ x=-i

It is assumed that each step starts to fire immediately after the preceding

step has ceased firing, and is discarded immediately after it has stopped

firing.

If it is assumed that all the steps are designed with the same

structural factor e and that the pay-load ratios for all the sub-rockets

are equal (it is believed that these assumptions are not far from the truth

for an actual multiple-step rocket) then the velocity of the rocket at the

end of burning of the third step is

v3= - _,,l" [_(',-,.)* x] _-_o)

where ca is the average value of effective exhaust velocity over the

entire firing period.

In case the mass of the pay load of the final step M_ and the mass

of the entire rocket Moy are given then the pay-load ratio k in

equation (9-20) for each of the sub-rockets is

Ho z
(9-21)

C6S<
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In practice, each step multiplies the total weight by a factor up to

IO, so that for reasons of shear bulk, rockets of more than 5 steps are

not often contemplated.

In equations (9-16) through (9-20) the effects of drag and gravity

have been neglected. Actually, even under conditions where flight is

made in the atmosphere at low altitude the effect of drag on the final

_Iccity is prectically negligible (about 5 percent) for large, slender

rockets. The deceleration due to gravity can be included in these

equations by simply adding the term -gtp, where tp is the duration of

powered flight in seconds. The acceleration due to gravity at sea level is

used here for the value of g since the error introduced by assuming a

constant _ will be very small if the burning stops at a distance above

the earth which is small compared with the radius of the earth. It is

apparent that the shorter the burning time, the less the effect of gravity

is on the final velocity of a rocket.

566 <
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SECTIONX

CHAP_CT_,ISTICSOFMODERNROCKETSANDPROPELLAi_S

i0.i General Comments

A few brief remarks will be madeabout rockets in general so as

to provide an overall picture of the varied details involved in rocket

engineering.

There are vast differences between liquid- and solid-propellant

rockets in regard to their design and operation. It has been apparent

that liquid-propellant rockets have been muchmore complicated in

relation to solid-propellant rockets. Since the solid-propellant rockets

are more convenient and easier to maintain - and thus cheaper - they have

been used exclusively where short duration and relatively small tD_usts

are required° The magnitude of the thrust of solid rockets has been

limited because the size of the propellant is limited by the manufacturing

process.

Nowadays, there are those who are convinced that solids will completely

_._ _ _._-_ _=_±_ systez,s _ _ _:_z- ±u_u_'e. Others give

the small missile field to solids, equal billing _ the mediumthrust range,

but probably less import&nce to solids in large motors since solids increase

in comclexity and hsndlin_ difficulty to a point where they lose any

adventage they once had over the liquids. No matter which is better, there

will undoubtedly be much to see and hear about both until higher energy

=y_tems are developed One fact worth mentioning about these advanced

_ystem¢ is that some may still be in the form of liquid-propellant

_¢stems. For instance, it will be possible to use the heat generated by

568<
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an atomic pile to vaporize a liquid (which can be called the fuel) and

heat the vapor to any desired temperature st a high pressure. Thus a

fuel such as water could be used. If hydrogen were heated to 4,OOO ° C

at a pressure of 300 psi and allowed to expand down to atr_ospheric

pressure a jet exhaust velocity of nearly 30,000 ft/sec could theoreti-

cally be obtained. This is about three or four times more than is

being achieved st present.

A simple definition of a rocket is a jet reaction motor that carries

its own working fluid. The propulsion unit is called a motor since it

has no moving parts. In a rocket, thermal energy is converted into

kinetic energy producing an imculse which is a thrust for a period of

time. Fuels av_il_ble for present or future use are chemical, nuclear,

sol,r, and ion or magnetic (sometimes called plasma). A comparison of

the energy of various fuels can be made with the use of the term Jet

horsepower which is obtained by

thrust x enhaust velocity
jet horsepower =

55o

Typical values of jet horsepower for several rockets as well as for a

jet engine are shown in the following table. Each of the jet-horsepower

values given correspond to a 30 pound thrust.
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For 30 pound thrust

Exhaust velocity Mass i_ow

ft/sec Ib/sec Jet horsepower

Turb oj et 2,700 O.3 150

Chemical rocket (present) 7,5OO .12 400

Chemical rccket (advanced) 15,OOO .07 800

Nucl ear rocket 45,OO0 .023 2,500

Ion rocket "_ 3,000,000 up to the
Fhoton rocket _ velocity of light .00032 160,OOO and up

In SECTION IX it was shown that the energy of a chemical rocket is

limited b_ temperature and molecular weight (and to a lesser extent, by

specific heat).

F---------

exhaust velocity _ V_ c-

where T is the specific heat ratio

T is the temperature in the combustion chomher
C

_ is the molecular weight

A hi[b performance can be obtained by high temperature or low molecular

weight. The hi_her +emper_tures for better performance are in turn limited

due to cooling difficu.lties. Thus, high performance depends on high

efficiency in that as little thermal energy 8s possible must be lost

from the working fluid to the chamber and nozzle walls. Nuclear systems

must have high efficiencies or else the very high temperatures will

damage the rocket unit. The energy in an ion rocket is proportional to

-- where the V is the voltage, and M is the molecular
Q is charge,
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weight. Here, for high performance the fuel must have a high charge,

a high voltag,e, or a low molecular weight.

In re_ard to chemical propellants, they can be classified into three

_roups: (I) liquid, (2) solid, and (3) hybrid, which can be a combination

of a liquid fuel and solid oxidizer or a combination of a solid fuel and

l_q_[d oxidizer. Further discussion of hybrid fuels will not be made

since they have not been used with muchsuccess. The word propellant

refers to both the fuel and oxidizer which are combined to produce

b_Jrn[n_. Fuel can be referred to as the reducin_ a_ent and the oxidizing

a_ent is _hat comFourJdthat increases the proportion of oxygen or acid

formin_ elements or radicals when combined with another compound. Liquid

propellants require a mixin_ apparatus (injector) and in most cases must

have pu, ps. Solid propellants are mixed during the manufacturing process

and, of course, need no pumping.

10.2 Liquid Rockets and Propellants

In contrast to the solid rocket there seemto be manymore items

to be covered whendiscussing the more complicated liquid-propellant

rocket. It should be noted that the statements madeherein are general

_n n_ture. Actually, all the various rocket units now in existence

wi]] differ from each other in many respects since each is designed for •

specific task.

In re_ard to the size of the combustion chamber, it must be large

,,no_1_hto allow for complete combustion of the propellants. A spherical
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shape is desired since for a given volume this shape provides the minimum

wall-surface area, therefore, the least weight. Also, manufacturing con-

siderations indicate a preference for a spherical or cylinderical shape.

In addition, the cooling jackets are more difficult to design and build

for the more complicated shapes.

As for feeding the propellants into the combustion chamber, it is

important to realize that they have to be forced into the chamber under

considerable pressure since the high temperature gases in the chamber

are already at high pressure. Of the many ways of feeding the propellants

to the chamber two are most widely used. The first employs a gas pressure

feed system and is used on low-thrust, short-duration units. In this

system the propellants are forced out of the tanks by replacing them with

high pressure gas. This system is not used on large rocket units because

large tanks would be required. Since these have to be made to withstand

pressures greater than the combustion chamber pressure, their weight would

become excessive. For t_e high-thrust, long-duration rocket use is made

of the turbopump system. Here the propellants are pressurized by pumps

which, in turn, are usually driven by turbines. Ordinarily a series of

centrifugal pumps would be used to generate the high pressures, but due

to the weight limitations in a rocket, only a singlepump is likely to be

used. This will result in the pump being run at an abnormal speed. The

power to drive the turbines can be obtained in many ways, but normally is

obtained from a gas generator either having its own propellant supply

or using the same propellants as the rocket combustion chamber. Other

means by which turbines are powered are by bleeding gas directly from
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the combustion chamber or by using gas given off from solid-propellant

charges burning at a slow rate.

Two important features of the combustion chamber are the injector

and the igniter. The injector has a dual Job in that it must spray both

the fuel and oxidizer into the chamber as finely divided mists and at the

same time properly mix them in the correct proportion. There are many

kinds of injectors in use; some spray in jets, some in thin sheets, while

others use a conical spray. Different propellants require different

t}_pes of injectors, with the best injector usually being found by

testing. An igniter is not always necessary, as some propellants ignite

spontaneously on contact. Where it is needed, the igniter itself may be

a very small liquid-propellant rocket, which can be ignited by a spark

plug. This produces a Dencil of flame which can be used to light off the

main stream of propellants. This arrangement allcws the rocket motor to

be switched on and off.

It is often claimed that the starting is the most difficult operation

in running a combustion chamber. The start must be accurately controlled

to produce a smooth and ev,_n combustion. Care must be taken to avoid

forming an unlgnited explosive mixture of propellants. The initial propellant

flow is usually regulated to be less than full flow and the starting

mixture ratio of the propellants is different from that used during normal

operation. Frequently, a more reliable ignition is assured when one of

the propellants is intentionally made to reach the combustion chamber

first. Ordinarily, for a fuel-rich mixture the fuel is admitted first

and vice versa for an oxidizer-rich mixture.

L73<
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It seems almost unnecessary to mention the fact that the problem

of cooling a liquid-propellant rocket motor is a large one: As for

solid-propellant rockets, they are almost exclusively uncooled; however,

liquid rockets are usually cooled, especially when used for a long duration.

In these rockets some or all of the metal parts in contact with the hot

_ases must be cooled - such as the chamber walls, nozzle walls, injector

faces, etc. The cooling jacket, which provides for the circulation of the

coolant, is designed so that the coolant velocity is the highest at the

critical regions and the fresh, cold coolant enters the jacket at or

near these regions. Helical coolin_ passages are frequency used,

especially at the critical regions where high velocities are needed.

Regenerative cooling is used by the majority of flying liquid-propelled

rockets. This method involves circulating one of the propellants through

the cooling Jacket on its way to the combustion chamber. It is of

interest to note that the initial energy content of the propellant is

thus augmented prior to injection increasing the exhaust velocity up to

1-1/2 percent. Water is often circulated in cooling jackets and is used

extensively in static test stand firings. Another method of cooling is

known as film cooling. Here, a thin fluid film covers and protects the

exposed _al] _urfaces from excessive heat transfer. The f_im is introduced

by injecting small quantities Of fuel, oxidizer, or inert fluid at very

low velocity in a large number of places alon_ the exposed surfaces.

This method is effective in that it forms a relatively cool boundary

layer and the coolant is able to absorb a considerable amount of heat

by evaporation. A special type of film cooling which has been tried is
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called sweat or transpiration cooling. This method uses a porous wall

material which admits coolant through pores over the surface. However,

difficulty has been encountered in making the coolant distributions

uniform due to variations in the pressure drop across the combustion

chamber, particularly in the nozzle. Also, difficulty arises in the

manufacturing for this process. The German V-2 used a combination of

film and regenerative cooling with the fuel being the coolant.

Considerable research effort has been expended to find materials

to meet rocket requirements. In brief, the wall materials have to

withstand relatively high temperatures, high local gas velocities, the

chemical action of corrosion and oxidation, high stresses, and initial

heat shock. In addition, the walls have to permit high heat transfer

rates and thermal expansion. These severe conditions are somewhat

alleviated by the comparatively short operational duration of the

rocket. High thermal conductivity and high strength at elevated temperatures,

two important properties required in the inner walls of a cooled rocket

combustion chamber, are not usually found in the same material. For

instance, stainless steel withstands high stress at high temperature,

but its walls have to be made thin for good heat transfer. Thus, material

of this type would not be strong enough to be used in a large combustion

chamber. On the other hand, high conductivity materials such as copper

_nd aluminum have low strength at the higher temperatures and, therefore,

reqnire heavy and thick chambers. Some materials that have been used

successfully are aluminum alloys, low carbon steel, alloy steels, and

stainless steels.

LTS <
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There are many chemical compounds that are used for the fuel and

oxidizer in liquid propellants. Some of the more common oxidizing agents

and liquid fuels are listed below along with a few pertinent remarks

about each.

Oxidizing Agents :

(i) Hydrogen peroxide (H202).- This compound, which is liquid at room

temperature, does not have a very high energy content. It is diffi-

cult to handle in that it is quite unstable, decomposing readily

into H20 and 02 . This reaction, which is often spontaneous,

occurs with most organic material such as grease and oil (explosive)

or skin (burns). In addition, it is poisonous and very corrosive.

(2) Nitric acid + nitrogen tetraoxide (HNO3 + N2Oh).- This is liquid

at room temperature, easy to handle, but very corrosive.

(3) Liquid oxygen (02).- This abundantly available element is liquid

only at very low temperatures. It is difficult to handle because

of the severe cold and must be kept away from oil because of the

fire hazard.

(h) Liquid fluorine (F12).- Fluorine is liquid at very low temperatures,

only, and is very toxic and spontaneously reactable with many

materials and metals.

(1)

Liquid Fuels (Reducing Agents):

Gasoline (CsH18).- This wasone of the first fuels used and is still

in wide use today.
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(2) Alcohol (C2H5OH).- Alcohol is readily available and, therefore,

used in many of the liquid-propellant rockets.

(3) Aniline (C6H5NH2).- Aniline is a hydrocarbon that ignites spon-

taneously with nitric acid; therefore, this propellant combination

does not require an ignition system. Spontaneously ignitable

propellants are often termed hypergolic.

(4) Ammonia (NH3).- This is a very stable compound; it can be mixed

with other compounds without dan_er of explosion. Ammonia can be

made hypergolic with nitric acid by addition of lithium.

(5) Methane (CH4).- Methane is non-corrosive and stable, but presents

a high fire hazard. In addition, it is an asphyxiating agent.

(6) Hydrazine (N2H4).- This has a loosely bonded chemical structure,

therefore, high energy. It is a fire hazard and only slightly corrosive.

(7) Unsymmetrical dimethyl hydrazine [N2H2(CH3)2].- This has good

storability; that is, the liquid can be stored in ordinary tanks

over long periods and at many temperatures without decomposition or

change of state.

(8) Liquid hhdrogen (H2).- Liquid hydrogen is very cold and, therefore,

its contact with metals causes severe brittleness. Because of its

low specific _ravity large tanks are required resulting in a heavier

tank weight.

Performance of a rocket is expressed in terms of the effective exhaust

velocity c or the specific impulse c/g. Specific impulse is the thrust

delivered per unit weight of propellant consumption, its units being

 77<
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/

Ib/Ib/sec or just sec.

propellant combinations are given below:

Oxidizer and Fuel

Hydrogen peroxide - gasoline

Hydrogen peroxide - hydrazine

Nitric acid - ammonia

Nitric acid - aniline

Liquid oxygen - gasoline

Liquid oxygen - alcohol

Liquid oxygen - hydrazine

Liquid oxygen - liquid hydrogen

Calculated values of specific impulse for a few

Specific Impulse (sec)

25o

26o

24o

24o

260

260

28O

360

The above values are for a chamber pressure of 500 psi and expanded at

sea level pressure; the chamber temperatures are from 4500 to 5500 ° F.

In combination with most fuels, liquid fluorine affords higher

values of performance than most other oxidizers. Several examples are

shown below for a chamber pressure of 500 psi expanded to sea level

presser@ :

Oxidizer and Fuel

Liquid fluorine - ammonia 300

Liquid fluorine - hydrazine 320

Liquid fluorine - liquid hydrogen 380

Specific Impulse (sec) Chamber Temperature (_)

7200

79OO

51OO

Expansion at higher altitudes with a larger nozzle may increase the

specific impulse by as much as 70 to 80 percent. In actual practice,

three to ten percent less than the 8bove values is obtained.

D78 <
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Combustion temperatures above 6500 ° F are usually not feasible since

the molecules will become unstable and dissociat%consuming some of the

energy of the gases. Fluorine rockets can be run at higher temperatures

than most other chemical systems since fluorine is much more stable at

these temperatures. For a fluorine-hydrogen rocket half as much hydrogen

would have to be carried than for an oxygen-hydrogen rocket since only

one H 2 molecule is required for each FI 2 molecule whereas two are

required for each 02 molecule. This is a big advantage since the low

density of hydrogen requires bulky fuel tanks. In regard to the highest

energy content which can be expected there are no known chemical propellants

which have an energy content twice that of those now in common use.

Fuel utilization is an important problem with a liquid fuel system.

The optimum case would be that all fuel and oxidizer are used up at burn-

out. This means very close control must be maintained over the amounts

of fuel and oxidizer carried and over the combining of these two compounds

in the proper ratio for the desired thrust. Any oxidizer or fuel left

over at burnout means a reduction in the performance of the rocket .....

8s can be seen by referring to equation (9-16) in SECTION IX.

where

effective exhaust velocity,

at the beginning, and Mf

vf = c Sn wM°

Mf

vf is the drag and gravity free velocity at burnout, c is the

M o is the mass of the rocket (plus fuel)

is the mass at burnout.
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I0.3 Solid Rockets and Propellants

Solid-propellant rockets are storable and thus do not require long

delays after a decision is made for firing. Since solid fuel is more

dense than liquid fuel, a solid-propellant rocket will be smaller than

liquid rocket for a given impulse. Due to the high temperatures at

which s solid fuel burns and since solid-propellant rockets are not

cooled, they can be operated for only a short time; otherwise, the case

would be melted or weakened. The solid rocket has no moving parts such

as valves or pumps; it consists of the four parts shown in the simple sketch

below:

f/A //

r/A i/

f/A - -
//A -
z/ A V/_
fJA - -
f/A

r/A ,

-/ _ //

_._ /.-

"-,, /

_-_ Nozzle

Igniter

Propellant charge

Case

Essentially, the entire solid-propellant rocket is pressurized, as the

solid fuel comprises most of the rocket. The igniter emits a hot gas

over the entire exposed surface of the propellant. Solid propellants can

be ignited almost instantly, the shortest time being 10 or 12 milliseconds.

 :SO<
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The design and manufacture of the propellant or grain, which is the name

given to describing the physical body of the propellant, allows the thrust

to be predetermined and programmed. Recent developments have been made

where the solid rocket can be turned off and reignited.

There are two principal types of solid propellants. The first is

referred to as double base propellant type because the propellant is

mainly a combination of two chemical compounds, nitrocellulose

[C6H702(ON02)3] and nitroglycerin [C3H5(ONO2)3]. These are unstable

compounds which are capable of combustion without the addition of an

oxidizing material. These double-base compositions are either extruded

or cast. The specific impulse of extruded Ballistite (JPN), which

is 51.5 percent nitrocellulose and 43.O percent nitroglycerin is 246

seconds at a chamber pressure of iOOO psi and 239 seconds at a chamber

pressure of 500 psi. In the future, the specific impulse of solid

propellants will probably reach a value as high as 300 seconds.

The other type of solid propellant is called composite propellant

type and contains two principal ingredients, a fuel and an oxidizer,

neither of which will burn satisfactorily without the presence of the

other. The propellant usually consists of a finely ground oxidizer mixed

with a fuel (while the fuel is in the liquid state and often at an elevated

temperature) and is usually cast. Typical chemicals used as oxidizers

are ammonium perchlorate (NHhC!O4) and ammonium nitrate (NHhNO3) and are

used with such fuels as Thiokol, polyurethanes, polyesters, and butyl

rubbers. Usually, 60 to 80 percent of these mixtures is the oxidizing

LSi<
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agent. The ammonium perchlorate produces an exhaust gas which is toxic

and highly corrosive to many materials.

In both types of solid propellants, other chemicals are included,

• in addition to the principal ingredients, to control the physical and

chemical properties of the propellant ..... such as serving as a catalyst

to accelerate or decelerate the burning rate.

For a solid propellant rocket the highest efficiency is obtained

when the rocket is operated at a constant pressure. When this happens

then the mass of the fuel burned equals the mass dischsrged.

Now

where

and

where

Then

- RSpp

R is the burning rate or the velocity at which a solid propellant

is consumed

S is the propellant burning area

pp is the propellant density

_d = Cd Pc At

C d is the discharge coefficient

Pc is the chamber pressure

A t is the nozzle throat area

RSpp - Cd Pc At

The burnin_ rate is a function Of the chamber pressure,

n
R = apc
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where a and n are constants. (The constant a depends upon the

temperature of the propellant grain prior to combustion.)

Thus

or

aPc n SPp - Cd Pc At

1 1

(i-

where the constant K is determined by the choice of the propellant. The

ratio of the burning area to the nozzle throat area is an important

quantity in the design of solid propellant rockets. For example, the

relation permits an evaluation of the variation necessary in the throat

area if the chamber pressure (and therefore the thrust) is to be changed.

From the foregoing development it appears that the problem in grain

design is to make the shape of the grain such that its burning will main-

tain a constant pressure. This is done by trying to design the grain

so that the burning surface will always be a constant area during

burning. Some examples of grain design where it is possible to obtain

a constant burning area are shown below: (Arrows indicate burning surface.)

(a) (b) (c)
LSS<
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In the case of an internal burning design, as illustrated by (b) or (c),

none of the heat of combustion gets to the case; therefore, the case can

be made lighter giving a rocket of better performance.



ll.l

ll - 1

SECTION XI

AERODYNAMICHEATING AND HEAT TRANSMISSION

General Physical Principles, Temperature, Heat and Energy

We are all familiar with the kinetic energy of a body,

due to its mass in motion, or its potential energy, due to

its position in a gravitational field. Many engineers do

not frequently work quantitatively with heat energy; the

purpose of these notes is, therefore, to review some of the

physical principles, the concepts, and the quantities which

are used in this field.

We all have an instinctive idea of what we mean by

temperature and heat. We say that heat is that which causes

a body to rise in temperature, and temperature is a quanti-

tative measure of the degree of hotness or coldness of a body.

It is rather like a potential, and we ordinarily adopt some

arbitrary scale, and arbitrary reference. The ice point and

boiling point of water are two standard points, given values

of 0 to 100 degrees on the Centigrade scale, 32 degrees and

212 degrees on the Fahrenheit scale. These values are old

standards, new physics has associated with heat the vibration-

al energy of the molecules that make up the substances. This

energy becomes zero at a temperature of zero on the absolute

scale of temuerature, 0 degrees Kelvin for the cgs system,
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0 degrees Ranklne in the Fahrenheit scale.

adopted relations are

The generally

T, (°K} = T (C° ) + 273.18

T (°R} = T (°F) + h59.72

(ii.I-I)

(ii.I-2)

Now it was one of the great illuminating principles

of science that energy in its various forms can be measured,

and compared on a common basis, by reducing each to the

amount of mechanical work it can do. This point has not

always been as obvious as it seems now, in fact it was not

believed generally true, especially in the biological

sciences until Helmholtz, as recently as 18h7 published his

famous paper, "On the Conservation of Energy".

Since the kinetic energy of a mass m is i/2 mV2,

the work done in lifting a one pound weight one foot against

the force of gravity will give that same weight a velocity

V = _2 = _2 x 32.2_8 ft/sec. Conversely, a weight of

one pound moving at 8 ft/sec, would, in coming to rest, do

one ft-lb of work. Some sharp fellow, probably a blacksmith,

noticed that if the weight was a hammer that he was swinging

with all his might against an anvil, so that it stopped dead,

then the hammer, and also the anvil got warm. This was a

great mystery at first; it's not so long ago that it was

finally demonstrated that the same amount of work always

produced the same amount of heat, and we were led to the idea

of the mechanical equivalent of heat, J for the British

physicist Joule who measured it in 18_3. The modern value

LS6<
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is that J is 778.26 ft-lb per BTU; that is 778.26 ft-lb

of work done will generate sufficient heat to raise the

temperature of one pound of water by one degree Fahrenheit.

The BTU, British Thermal Unit, is the quantitative measure

of heat, the amount of heat required to raise the temperature

of one pound of water one degree Fahrenheit.

In an earlier SECTION on the Orbits of Satellites we

_iscussed the concept of the total energy of a satellite,

2

U = _ mY2-- _ " It is instructive to consider
r"

this energy, not only from the standpoint of the usual

measure, ft-lb, but also as U/J, or the heat capacity.

For a circular orbit of radius r the speed of the

satellite is _ = VR_Z@ and its total energy is
r

U = r

Since the value of total energy uniauely fixes the seml-

_n_ _Y4_ _ _n_ f.h11_ t h_ ._4_e Of any e,ll]nt]aal orb_t_.... _, .......................... j.

we can regard this value of total energy as U a the total

energy of any elliptical orbit of semi-major axis a,

regardless of eccentricity and write

/ mRe 

f4
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- o.s

For the same satellite at rest on the earth (V = O, a = R)

U = _/
m

These relations are illustrated in figure l, where the

total energy is plotted as a function of a/R. The abscissa

is discontinuous to cover a wide range. The ordinate on

the left is an orbital energy scale, where the zero applies

to a body at rest at infinity. The scale on the right is the

total energy of a mass of 1 pound in an orbit at a/R,

expressed in BTU/lb. The zero for this scale is taken as

at rest on the ground, lh,000 BTU/lb are required to

establish an orbit of radius R, very little more would move

the orbit out to bOO miles (a/R = 1.1), twice would put it

at infinity.

ll_,000 BTU/lb is a lot of heat, when it is recalled

that 180 BTU will raise a pound of water from the ice point

to the boiling point. An additional 970 BTU will vaporize

a pound of water into steam, lh3 BTU will melt a one pound

block of ice at 32°F. Thus a one pound satellite has enough

energy to turn an ll pound block of ice into steam. Converse-

ly, this much energy must be dissipated if a satellite in

orbit is to be returned to earth. Much of this energy can

be dissipated as drag, some will appear as heat, which must

in turn either be disposed of by radiation or be conducted to

the interior and absorbed. The following sections will review
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the principles of radiation, conduction and convection.

Symbols and definitions of quantities generally used in

this discussion are defined in the table.

Modes of Heat Transmission

Heat is moved from place to place in three ways, by

radiation, by conduction and by convection. The laws govern-

ing these modes of transmission are of great engineering

importance, and have been studied for a long time, by many

of the great names of science. Fourier (1822) invented

Fourier series to deal with the problem of the flow of heat

in solids, Newton stated the law of heat transfer from a

solid to a fluid in 1701.

Radiation

Every body emits radiant energy in all directions.

When this energy strikes another body some may be absorbed,

some reflected, and some transmitted through the body. The

part absorbed is transformed into heat. The law of thermal

radiation was discovered empirically (1879) then derived

theoretically (188h). The quantity of heat radiated per

second from a surface of area A at a temperature T is

dQ : A
dt (11.3-1)

This law as written applies to a so-called "black body",

an ideal radiator, or what is the same thing, a perfect

absorber, at all wavelengths. Most substances reflect some

part of the illumination that falls on them and are thus not

L89<
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black bodies. They are characterized by a quantity

called the emissivity, which is defined as the ratio of

the total energy radiated by a body at temperature T to

the energy radiated by a black body at the same temperature,

i.e.

(dQ/dt)

= surface (ii. 3-2)

(dQ/dt)black body

Polished metallic surfaces at room temperatures have low

values of emissivity, the lowest being gold witm a value of

0.018. Most polished surfaces darken as the temperature

increases, due to oxidation of the surface; under these

conditions the emissivity may range up to values between

0.8 to 0.98. Extensive tables of emissivities have been

published.

The constant c in equation (11.3-1) is the Stephan-

Boltzmann radiation constant, the value of which has been

determined as 0.47594 x i0 "12 BTU/(Sq ft)(Sec)(°R) 4. Thus

for practical surfaces the total energy per second emitted

as radiation may be written as

4Q
d--'_'- /000 / ( ii. 3-3 )

This radiant flux is distributed continuously over a range

of wavelengths in the spectrum of electromagnetic radiation

which includes radio waves, and light, on down to the very

short such as X-rays. Some representative points and bands

in this spectrum are tabulated below, where the wave lengths

 90<
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are expressed in Angstrom Units; one AU is 10 -8 centimeter.

Spectrum of Electromagnetic Radiation

Radi at ion

X-rays

Ultra Violet, less than

Visible spectrum

Infra red, greater than

Hertzian waves, greater than

Radar

WVEC - TV

WVEC

Wave Length AU

io- 15o

4,000

4,000 - 7,000

7,000

2.2 x 106

109

6.26 x 109

2.012 x 1012

The energy per unit area per unit time emitted by a

black body in the wave length range /_ to )_ + d_

is expressed by Planck's Spectral Distribution Law as

Where

ec /RT _ /

c = velocity of light

h = Planck's constant

k = Boltzmann's constant

c2 = 1.4387 cm°K = 2.5897 cm°R

(n.3-4)
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The total area under this function, i.e., integration

between O( _ _m_ leads to equation (11.3-3). The shape

of the spectral distribution was first determined experiment-

ally but classical physics was unable to explain it, or pro-

vide a formula for it. It remained a puzzle until Planck

proposed the quantum theory and in 1901 derived his dis-

tribution function which agreed with the hitherto inexplicable

curve.

The spectral distribution has a single peak at a wave-

length _p which varies inversely with the absolute

temperature in a relation known as Wien's Displacement Law,

Or

(ii.3-5)

The movement of this peak from the red end of the spectrum

to the blue with increasing temperature is reflected in the

increasing whiteness of luminous sources such as light bulb

filaments with increasing temperature. Practical use is

made of this property in use of the color scale of temperature.

For many practical pruposes, radiant energy has its

source on hot walls of a solid, and the temperature of a

body can be estimated visually from its color by use of the

following table.

_'_,,
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Color Scale of Temperature

Color

Incipient Red

Dark Red

Bright Red

Yellowish Red

Incipient White

White

Temp. OR

1390 - lh80

1660 - 18hO

2020 - 2200

2380 - 2560

2740 - 2920

3100 - 3280

Gases like nitrogen and oxygen do not radiate to

any extent, nor do they absorb. Carbon dioxide and water

vapor on the other hand, like many other gaseous compounds

have complicated absorption bands especially in the infra-

red and thus can emit a certain amount of heat. The net

effect of all atmospheric components has been correlated

on the basis of an emperical relation which treats the

atmosphere as a radiator at the ambient atmospheric temper-

ature TA with an em_q_v_ty....... a_ _,_,,_,,....,_^- linearily

with the square root of the atmospheric pressure. The

relation for this sky radiation factor may be written as

(11.3-7)

and thus an expression for the radiant energy from space and

the outer atmosphere absorbed on a surface is

: A rA (11.3-8)dt

:.93<
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This relation, based principally on ground

observations, should be applicable at moderate altitudes,

its suitability for use in the upper fringes of the

atmosphere is not known, since here some atmospheric com-

ponents are ionized or atomic rather than molecular. The

energy exchanges associated with ionization and dissocia-

tion of gases are frequently good sources of radiant energy,

the sun for example. As a source of radiation the sun is

not a black body, but the radiant flux from the sun has a

value known as the solar constant C and taken as 0.1192

BTU/(sq ft)(sec). This value is taken as applying at the

top of the atmosphere, at the mean distance between the sun

and the earth. Thus the heat absorbed from the sun can be

written J_

=
(li.3-9)

where _ is used instead of the absorptivity for solar

radiation, a quantity which for some materials differs to

some degree from the absorptivity for black body radiation.

Convection

Newton, in 1701, defined the relstlon for the heat

transfer between fluid at a temperature T and a surface

at a temperature T S. The relation may be written as

J-gQ :  A(r- (n
dt

Equation (iI._-i) is not a physical law but an expression of

experimental observations which is applicable to many sur-

faces and fluids; the latter may be liquids or gases. The

<
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convective heat transfer coefficient h is not a cal-

culable Quantity but theoretical considerations indicate

that it should be a function of both the flow conditions

and the thermal properties of the fluid. Flow conditions

can be correlated by means of the dimensionless ratlop

the Reynold's Number Re, fluid properties in terms of the

Prandtl Number Pr; the convective heat transfer coeffi-

cient is expressed in dimensionless terms by the Nusselt

Number, Nu. Theory does not provide an indication of the

functional nature of the relationship between these three

dimensionless ratios, but experimental evidence tends to

confirm the general indications of theory. A number of

experimental correlations have been published, one fre-

quently used is of the form

or

where A is some constant and

dimension and the exponent m

about 0.31.

the form

L is some characteristic

appears to have a value

For spheres in air equation (ll._-3) takes

_D _ 0.37 ( eVD )0.6T - x

For use of equation (Ii._-_) temperature T

fluid is required. In aeronautical applications

for the

T will
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not ordinarily be the ambient temperature of the atmos-

phere because of the phenomenon of aerodynamic heating. To

discuss this subject several special temperatures must be

defined. Stagnation temperature TT, adiabatic wall

temperature Taw , and surface temperature T S.

Sta_natlon temperature: Consider a body moving with

a velocity V through air at rest at a temperature TA.

At a stagnation point on the body the air is at rest

relative to the body and has thus also acquired a speed V

relative to the ambient air. Work has thus been done on

this air, increasing both temperature and pressure, in-

creasing its total energy. For a perfect gas theory ex-

presses the stagnation temperature in terms of TA, the

Mach number, and the adiabatic exponent _ which is the

ratio of the specific heat of the gas at constant pressure

to the specific heat at constant volume. This relation

is

(ll.&-5)

Although useful for values of Mach number up to 2 or 3,

equation (11.4-5) is strictly applicable only for the

limited range of temperatures and pressures over which the

specific heat of air is substantially constant. More accur-

ate values of stagnation temperature are obtained from

enthalpy tables. Enthalpy is a measure of the total energy

of a gas, Air at rest and an ambient temperature TA has

L96<
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a value of enthalpy per unit mass hTA given in Table 2.

An increase in speed to a value V provides an enthalpy

increase Ah - V2/2gJ. The stagnation temperature is then

that temperature corresponding to the enthalpy hTT where

V _

h_ = _7A + 29J" (ii._-6)

A comparison of values of stagnation temperature computed

by equations (ll.h-5) and (ll.h-6) is given below for

TA = 518.h or sea level in the standard atmosphere.

TT T T

M _ _" = I._ enthalpy basis

1 622 622

2 933 929

3 1_51 lh18

h 2177 2060

5 3110 28h4

6 4251 3770

7 5599 4830

8 715_ 6o_o

Adiabatic Wall Temperature: At any point on a

moving object which is not a stagnation point, the air is

also at rest, but through the boundary layer there is a

transition to free stream conditions. The nature of this

transition is such that the surface may assume an elevated

temperature near but less than the stagnation temperature.

If the heating process is an adiabatic one, free from the
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effects of conduction and radiation, the temperature

reached is termed the adiabatic wall temperature Taw.

Data on Taw are correlated by a temperature recovery

factor K which is indicative of the proportion of the

total temperature rise TT - TA achieved, that is

_ (n.E-7)

The actual value of K varies with the boundary layer,

being smaller for laminar than for turbulent boundary

layers. Theoretical studies by Polhausen indicate that

for flat plates parallel to the stream K is a function

of the Prandtl number, based on a Prandtl number for air

at ordinary temperatures of 0.72, these studies indicate

Laminar boundary layer,

Turbulent boundary layer,

values which are in general confirmed by experiment. For

blunt bodies, the recovery factor will, in general, vary

with the shape ranging upward from the flat plate values

K = (Pr){ = 0.85

K = (Pr_ = .895

toward unity.

Surface Temperature: The temperature actually assumed

by a surface under the action of convective heating depends

not only on the adiabatic wall temperature and convective

heat transfer coefficient, but also on any exchange of energy

-q%Q<
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by radiation, and by conduction of heat to some other

parts. Under steady conditions a surface initially at

a temperature TS would reach a temperature Taw under

the action of aerodynamic heating alone, but radiation to

other bodies, the earth and outer space can reduce this

value considerable.

Equilibrium Temperature: Under the combined actions

of aerodynamic heating, and raSiative processes, with or

without solar heating a body will ultimately reach an

equilibrium temperature Te which is ordinarily less than

the value of Taw appropriate to the operating conditions.

At Te the net rate of heat transfer is zero. The time

taken to reach this equilibrium temperature depends to a

large extent upon the magnitude of the heat transfer co-

efficient. Consider a conducting flat plate initially at a

temperature TS, one face of which with area A/2 is

total aero@ynamic heating input would be, by equation

(ll._-l) hA(Taw - TS) , the solar input would be C _

The radiation exchange with the earth and space would be

expressed by £ o'A(_7AA4- _J . At equilibrium where

TS-_ Te, the sum of these terms is zero and

With due attention to the areas involved, and the presence

or absence of solar heating, similar expressions can be

written for other shapes. These expressions are all of the

3..gg<
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fo= _ re÷ _ r_ - _ - o , thepositive_eal

root is the equilibrium temperature.

When speeds are of the order of satellite speeds,

Taw Is of a different order of magnitude than TA, for

such speeds more Is known at present about the product

hTaw appearlng In equation (ll.[_-8) than about

either h or Taw alone. Under such conditions, a

frequently used correlation is that by Romlg, which gives

the heat transfer rate at the stagnation point of a hemis-

pherical nose of radius Rn in terms of the Mach number M

and free stream pressure p as

11.5

I _ _ o 0/45 Ma'_ _oft., - " _ (ll.h-9)

Conduction

In an opaque solid, conduction Is the only mechanism

of heat flow. Under the influence of a temperature gradient,

kinetic energy is transferred from a molecule to adjacent

molecules. The flow of heat through a medium is thus In

many ways analogous to the flow of electricity. Heat flows

from a region of high potential (temperature) to a region

of low potential; a substance Is characterized by its

conductivity k, a sort of reciprocal resistivity. Just

as electricity can be stored by increasing the charge In a

condenser, heat is stored In a substance by increasing the

temperature. These two properties of flow and storage, are

characterized by two equations which are fundamental to any

4C0<
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consideration at the conduction of heat.

The flow equation:

JQ - - _A Jr
dt - dx (II.5-i)

expresses the quantity of heat passing a boundary in the

medium in terms of the temperature gradient dT/dx

at that boundary. The storage equation:

= w f,_ _ drc ,,. (n.5-2)dZ

relates the quantity of heat stored in a volume of area

A and thickness Ax, to the rate of temperature increase

and the heat capacity of the medium. The heat capacity,

the quantity of heat required to raise one cubic foot of

the substance one degree fahrenheit, is the product cw,

of the specific heat c (BTU per pound) and the specific

weight w (pounds per cubic foot). Values of c and w

for some representative materials are given in Table 2.

The application of these two equations to hest con-

duction problems is illustrated by the classical Fourier

Heat Conduction equation for one-dlmenslonal heat in steady

heat flow. Consider a homogeneous medium, either a rod of

area A an4 length L insulated so that heat can flow

only in the x direction, or a small section of a large slab

of thickness L unlfolnnly heated so that heat flow in the

y and z directions can be ignored. If at some point x

in the medium we consider a boundary across which heat is

flowing, the quantity of heat which flows per unit time by

401 <
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equation (11.5-1) is

f<,,a/
kd_ Jx :-kA (ax)x

Between the boundaries at x and x + Ax there

lles a slab of thickness Ax, and heat capacity cw.

The difference between the heat which flows into the

slab at x, and that which flows out at x + Ax, is

,ax X ÷AX (11.5-3)

This is the heat which remains in the slab an4 which by

the storage equation produces a rate of temperature

increase dT/dt specified by the relation

The temperature gradient at x + Ax is related to that

at x by the relation

:+ax t_--7._-] _x (ll.5-5)

where the second derivative is evaluated at some point

between x and x + Ax. For vanlshingly small values of

Ax, then the bracketed term in equation (II.5-_) becomes

_ ,-., =
t dx ,/x

(ll.5-6)

402<
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hence, the equation for one dimensional unsteady heat

flow,

or

d_ m/_* (11.5-7)

cwA_L. - k
d _ ax-'r (ll.5-S)

where the partial derivative is used since T is a function

of both time t and the coordinate x.

In heat transmission problems, equation (11.5-8) is

generally written as

z (n.5-9)

where the quantity = k/cw termed the diffusivity, and

which has the dimension (length squared) is a useful measure

of the heat conducting properties of a material, the meaning

of which can perhaps be best illustrated by a solution of

equation (11.5-9).

As a partial differential equation, there are no simple

direct methods for the solution of equation (11.5-9).

Solutions to a number of special problems are known, however,

(see for example reference 1). The nature of each solution

is determined by the boundary conditions, that is the temper-

atures at particular times at particular points in the medium.

As an example of some practical interest, consider a plate

of thickness L, initially at a uniform temperature TO,

"J C_ "-
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one edge of which, (that at x = 0 ) is instantaneously

changed to a temperature T1. Such a problem represents

an idealization of a thick skin, one face of which is sudden-

ly subjected to a high temperature as in a Jet, i.e., where

the heat transfer rate is taken as infinite. For this pro-

blem the initial, or boundary condltlons, are, for all values

of t

(I) T,- T ,:,_ x - O

(2) -_ = O o_ x=L
Q" K

This second boundary condition follows from the assumed

idealization that no heat can flow across the unheated face

at x = L. The solution to equation (11.5-9) is then found

by the method of separation of variables, in which it is

assumed that the functional dependence of temperature on both

x and t can be expressed by the product of two functions,

here denoted @ and X where @ is a function of

and X is a function of x alone, that is

t alone,

Often it is easier to solve for the unachieved temper-

ature rise

Thus if

7" : 7-_,_-).- _ (ll.5-1o)

7 : X(4

4C4<
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and <)2._ --_ E) _ (ii.5-12)
Jx_' d,("

substitution of these relations in equation (11.5-9) gives

X _ _/_ (ii.5-i3)

or dividing both sides by T = _ "X

B d'-_ X (/x" (ii.5-i4)

This relationship can apply only if both sides of equation

(ll.5-1h) are equal to a constant, which can be written as

-b 2 Then

d@, .÷ 6 _ _ 8 ---C)
de (11.5-15)

J'_X ÷ b_ = 0 (ii.5-i6)
TV

It can be verified that

E_ = ge

is a solution to equation (11.5-15), also that

X -- A co5bx + B _,_ bx (ii.5-i7)

is a solution to equation (11.5-16) and thus that T is

given by the product of these two relations, or

;lOS_
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where the constant G is added as a constant of integration.

The boundary conditions are now used to determine the values

of d, F, G and b.

From the first condition T = T 1 at

T= 1. Thus D = 0, since e

G 1. Hence T / V- _- _a_= _IN b×

x = 0, therefore,

is not zero, and

dT

dx

= F6 -

From the condition that

that F # 0, and b = )
_L

---.

__7-:_0 a_ X = L; it follows

7)_ -;7 = /_ 3j-_---- and thus

- 5/N ng_K
2L

n = I, 3, _-----

There are a number of terms F_IN _ K each of
2L

which represents a solution of the equation, hence their

sum represents a solution, and thus

7-= / +_ F_ _ -_a_'/_"

whe re _ = =

S/N 2_ (ii 5-18)
ZL

(n. 5=19 )

At t = 0, T = TO and _p= 0 for 0< x___L, hence the

Fn can be established from the Fourier series relation for

a unit step,

4C 6":
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Hence,

.sIN

=0

£x-o3

w,- 2L

- 2_-_/_c J (ii. 5-20)+

is the solution to the problem. The temperature distribution

expressed by equation (11.5-20) is plotted in figure 11-2 for

_arious values of the ratio t/t o . The initial temperature

step to T1 at the face x = 0 penetrates farther and

farther into the slab with the passage of time. There is

essentially no warming of the inner face at x = L until

a time t slightly in excess of O.lt c has passed after

which the temperature increase is rapid. The time interval

(iI._-20) is a characteristic time fixed by the thickness L

and the diffusivity _ which is thus seen to be the square

of a characteristic dimension of the substance. This dimension

is a measure of the distance into the material which an initial

surface temperature increase will penetrate in a given time.

The two values of diffusivit_/ used for illustration in figure ii-

2 are representative of iron and carbon, the solutions are for

the unheated surface of one inch slabs of these two materials.

4%7 <
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Carbon, with its higher diffuslvlty, experiences a much

more rapid temperature increase than does iron.

Equation (ll._-lS) converges rapidly, and is, therefore,

easy to use for calculations. In order to obtain it, how-

ever, simplifying assumptions were necessary, infinite heat

transfer at the heated surface, and no radiation. These

assumptions would generally be too unrealistic for any

practical aeronautical applications. The assumption of

infinite heat transfer is not a necessary one, the solution

is known (reference l) for a finite value of heat transfer

coefficient from a constant temperature medium, but it does

not converge rapidly, and is awkward to use. If radiation

must be accounted for, exact solutions of the differential

equation of heat conduction have not been found, and recourse

must be had to approximate or to numerical methods, some of

which will be discussed under Heat Protection, SECTION XII.
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S_BOLS

solar constant, 0.1192 (BTU)/(Sq ft)(sec)

specific heat of material (BTU)/(lb)(°F)

specific heat at constant pressure (BTU)/(lb)(°F)

specific heat at constant volume (BTU)/(lb)(°F)

acceleration due to gravity, 32.17k0 ft/sec 2

convective heat transfer coefficient (BTU)/(sec)(sq ft)(°F)

enthalpy per unit mass of air corresponding to temperature

T, (BTU)/(Ib)

mechanical equivalent of heat (778.26 ft-lb/BTU)

temperature recover factor

thermal conductivity BTU/(sec)(sq ft)
deg F/ft

characteristic length

atmospheric pressure (ib)/(ft) 2

quantity of heat, BTU

rate of heat flow per unit area BTU/(ft)2sec

Reynolds number, (V _ p/_)

temperature °F and °R

time, seconds

velocity, (ft/sec)

specific weight of material, (ib)/(cubic ft)

Nusselt number, (h q/k)

Prandtl number, (Cp_g/k)

diffusivlty, k/cw

emissivity

Adiabatic exponent, Cp/C v

density (slu_s)/(cubic ft)

Stefan-Boltzmann radiation constant

O.h759h x lO -12 BTU/(sq ft)(sec)(OR) _

coefficient of viscosity (lb)(sec)/(sq ft)

410<
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THERMAL PROPERTIES

OF INSULATORS

(from reference 2)

Insulator

W

Temp. °R ib/ft 3

k

BTU/sec ft 2

_F/ft

Magnesite

Diatomaceous

earth (moulded

and fixed)

Kaolin

Aluminum foil

sandwich

858

1661

2651

858

2059

852

1860

56o

811

158

h2•3

19

.2

6.1 x i0 -h

_.h5

3.05

0.390

.528

•139

.31h

•069

.106
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Figure 11-2

Temperature variation with position and time for

se_,i-lnfi:_ite slab subjected to step te,_perature input 8t
face x = O.
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SECTION XII

HEAT PROTECTION

Introduction

In the discussion of basic heat concepts in SECTION

XI it was pointed out that energy equivalent to l_,O00

BTU/lb must be expended to return objects to earth from

satellite speeds. Some of this energy is dissipated in

the form of drag, that is, velocity changes, while the

remainder must be absorbed as heat or reradlated. The

energy values which enter into the heat protection problems

to be considered here are only a small fraction of the

l_,O00 BTU/lb figure. For example, to return a winged

vehicle similar to that proposed by the Flight Research

Division from orbit requires the disposal of only lSO

BTU/lb. This amount of heat, for example, for a _,000

pound airplane could be absorbed by 600 pounds of beryllium

with a temperature rise of 2,000°F. This, of course, may

not be the most efficient way to handle the heating as will

be demonstrated later.

There are available structural materials which retain

sufficient strength to be used at temperatures as nigh as

2000°F. There is considerable question at the pressnt time,

however, whether practical structures can be operated at
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2000°F. One important feature sometimes glossed over is

the effect of temperature gradients which would be associ-

ated with hot structures under transient heatin_ conditions.

For example, a Rene kl (nickel alloy) structure could support

temperature gradients of only about 350°F before approaching

failure from buckling considerations.

Several means are available to limit structural temper-

ature to 2000°F or any desired lower value (practical limits

arise, of course, in the size and weight of the insulating or

shielding material).

may be classified as

a.

b.

C.

d.

e.

The various heat protection schemes

Radiators

Insulators

Heat s inks

Surface evaporators

Internal coolers

Every heat disposal scheme contains elements of most of the

others. First let us consider the methods just listed to

see what physical processes are involved in each.

a. Radiators.- The ideal radiator is a black body and

most materials radiate heat from the surface only but it is

still impossible to raise the surface temperature of a

radiator to a point for efficient radiation without conduction

of some heat to the in%erior of the material.

417<

i
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b. Insulators.- The ideal insulator has, of cours_ a

low conductivity but large bulk even with low density is

usually associated with insulating materials.

c. Heat sinks.- The process here is to attempt to

retain in some non-structural item the heat input associ-

ated with high-speed flight. Materials with high specific

heat are desired and if high specific heat can be associ-

ated with low density so much the better.

d. Surface evaporators.- Under this classific_tlon

we can consider the melting, evaporation, sublimation or

ablation of various metals and or synthetic compounds such

as teflon. In these processes the latent heat of fusion or

vaporization is used to lower the surface temperature. In

an ablation process a change of state brought about by a

chemical reaction and relatively high temperatures may be

required for efficient heat absorption.

e. Internal cooling.- With this system of heat pro-

tection complications arise from the plumbing requirements

and the difficulties involved in forced convection heat

transfer calculations.

The major portion of these notes will be directed to-

ward presentation of equations useful in the evaluation of

heat transfer problems for Radiators, Insulators, Heat Sinks

and I hope combinations of these three schemes.

The basic laws of heat transfer have been covered in

SECTION XI but the actual solution of most heat transfer

problems is difficult compared to the apparent simplicity
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of the basic principles. For the remainder of this dis-

cussion simplifying assumptions will be made so that some

answers and some physical pictures of the processes in-

volved along with numerical answers may be obtained.

The first simplifying assumption will be that the heat

input to our structure is independent of the structural

temperature and has been specified by some independent

calculation. Thus we will be discussin_ time histories of

heat inputs such as are shown in figure 12-1. Fi_ __ou_e io_-ia

is the heat input in BTU/ft2sec. as calculated for the _,e-

entry of a large flat object at 90 ° angle of attack f: _'_

orbit at an altitude of about 70 miles. Figure 12-1b has

about the same total heat input over a shorter period of

time similar to a pulse which would correspond more nearly

to the heating rate time history of a capsule vehicle __rin_

re-entry.

12.2 Radiation

If all the heat inout could be r_<_iated back, th_

temperature time history of the skin of the structure c,::_uld

be comouted from the eoustion for radiant heat interc__-_Te

_-2- +Jk_-i

if body _ (the atmosphere) be considered a black body

with T2h _ 0 then

4i 9<



12 - 5

_ A_T¢ I
I -,,' z I I.J.._ + I.J._ _ I

E I I

: g, E, a- --r,4
(12.2-1)

Wh e re

and

Note:

q is the rate of heat radiated

A the area

a the Stefan Boltzman constant

the emissivity

T the absolute surface temperature

can range from 0.018 for gold to .98 for flat

black lacquer; for metals _ increases with

temperature until they become molten. For most

nonmetallic substances

crease in temperature.

negative gradient of

decreases with in-

Quartz has a large

with T and is one

A generally used value for emissivity is 0.8.

of the few substances whose thickness effects

the radiation properties.

Thus

equation (12.2-1) becomes

3_ = ._8OlI-_-ooo)eA
(12.2-2)

whe re q is in BTU/sec

A in ft 2

TI in degrees Rankine

42L;0 <
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The surface temperature time histories using equation

(12.2-2) for the time histories of heating rates in figure

12-I are shown in figure 12-2.

Heat Shield Case

The forgoing example is, of course, entirely hypothet-

ical since all the heat has been re-radiated and none con-

ducted or absorbed by the structure. A heat shield or _'-:k

may be used to reduce the surface temperature to a levez _c

which structural elements retain some strength. A heat

shield is most efficiently constructed of materials ,_lich

have a high specific heat. Two substances in liquid form,

water and lithium have high specific heats i and 1.;4, how-

ever, aside from the diffioulty of containing these fluids

as liquids the operatlng temperatures of concern here are

such that both would become vaporized. For both, of course,

vaporization would absorb large amounts of i_leat but then

they would not strictly speaking, be heat sinks.

The material which seems most suited for a heated

shield is the metal beryllium which has a s_ecific heat

rangln_ from 0.[, at O°F to about 0.7_ at l_O0°F, the

variation is not linear. Another metal whose soeciflc :eat

is of interest is nickel wlth a specific heat of C.l at

O°F and 0.15 at 1600OF.

The following m2terlal will cover the calculation of the

temperature rise due to the absorption of he_t for the :_:_t in-
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puts of figures 12-1a and 12-1b for beryllium and nickel.

The appropriate formula for use in heat absorption calcu-

lations is

4Q- VwcdT

In this equation

the volume in ft 3,

specific heat, and

R.

W

T

(As used herein)

(12.3-1)

Q is the quantity of heat in BTU, V

the density in Ibs/ft 3, c the

the absolute temperature in degrees

In the derivation of equation (12.3-1)

f
_see reference I) the assumption was made that the material

was thin with a high conductivity and thus no temperature

gradient existed from the front to back face. Equation

(12.3-1) may also be written as

T
t

Q = c
J

(12.3-2)

when the specific heat varies with tenperature.

Since W the weight = wV equation (12.)-2) is

k ,-_._.-o ..)_j I

where

and TO is the temperature at time O.

In figure 12-3 the specific heat curves for beryllium

and nickel as a function of temoerature are shown while in

j.'_figure 12-k the variation of C _ as a function

of T are given for an initial @ To = 500°R. Equation

(12.3-3) is then used to calculate the temperatures which

nickel and beryllium will reach when subjected to the
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heating rate curves of figure 12-1a and 12-lb. The re-

sults are shown in figure 12-_ for unit weights (W/A) of

nickel = 12 lbs/ft 2 and beryllium equal to 3 lb/ft 2.

Different weights were necessarily used otherwise the

nickel would melt before absorbing the total heat input.

The results shown in figure 12-_ were quantitatively

obvious from figure 12-5 where it could be seen that roughly

times as much nickel as beryllium would be required to

absorb the heat input equivalent to about 2300°R.

The efficiency of beryllium as a heat shield is

demonstrated by these examples, however, in the actual

physical case where radiation enters the picture there will

occur instances where the heat shield only adds useless

weight.

Radiation Plus Heat Shielding

Eouation 12.2-2) applies for the case of single sur-

face radiation. The thin materials we are speaking of here

may radiate from both surfaces at the same temperature, thus

equation (12.2-2) may be written as

where S is either 1 or 2.

Integration of equation (12.|_-I)

A ) kloool
t-o

gives

(12.[!-1)

(12.k-2)
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If heat _s both radiated and absorbed combination of

equations (12.3-3) and (12.h-2) gives

-- To (12.k-3)

The solution of equation (12.k-3) for TI can probably

be handled by some very high grade mathematics but the

approach detailed in the following produces answers in a

reasonably short period of time by trial a_d error. The

value of C is very small for the examples to be used and

will be discarded. The time interval chosen is At and

trapezoidal inte=ration will be employed,
:t--

\I_°°;n+,3801 5 ¢ .%8o15\i01 ] _ \ioool_-,

To
(12.1 -4)

,_o'-aoion (.4 _ _ _ --_i_.c-_s ma_, be solved by tPial _lu err_ u_ by

guess until the left hand side equals the right hand side.

As an example let us use 2 ib/ft 2 of beryllium with

At
double surface r_diation, - _ and the heat input

2

curve of figure 12-1b. Equation (12. h-4)becomes

4 T, ,,t(.-O

0

4a4<
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The time chosen for evaluation is i0 _ec., thus

"g°56r',,oooj 4,. roedr -- - 2.&a7jogoo° %

= .5(6o) - o - 1.9o (.5)

= 30.00 - 0 - .12

= 29.88

n=l

a

try T 1 = 800 then d_ from figure 12-_

: ik5

and the lefthand side becomes

1.903 (.8) £ + 145 = .78 + lh5/ 29.88

From this it is seen that the temperature in this temperature

range is primarily determined by the heat capacityso from

figure 12-4, (TI) est = 560°R

1.903 (.56)h + 29.5 = .19 + 29.5 = 29.69_29.88

This is about as accurately as the temperature (560 °) can

be obtainea from the scales used in figure 12-h.

The temperature time histories for various unit weights

of beryllium when both radiation and absorption effects are

considered are shown in figure 12-6 for the heat input of

figure 12-lb. Increasing the unit weight from 1 lb/ft 2 to

k lb/ft 2 lowers the heat shield temperature 1020°F or in

other words, an additional heat shield of 3 lb/ft 2 of

beryllium lowers the temperature 1020°F.

q_r
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Comparison of Radiation and Absorption Effects for

Pulse Type Input

A rehash of some of the previously presented data for

the pulse type of heat input of figure 12-1b demonstrates

the effectiveness of the heat shield as indicated in figure

12-1. For the case where all the heat is assumed to be

radiated the surface temperature follows the heat rate in-

put curve and a maximum temperature of about 3500°R is

reached. _2nen the temperature is calculated using the

absorption formula (and W/A = k.0 lb/ft 2) the surface

temperature time history has the shape of the integral of

the heat rate input curve with a maximum temoerature of

about 1700 degrees. The combination of both effects which

is quite close to the actual physical case reaches a maximum

temperature of about 1600 deg. after which heat is lost by

radiation. For this type of heat input with the relatively

large amount of beryllium used, radiation has a relatively

_ effect on _le laaxlmum temperature. As the unit weight

of the heat absorbing material is reduced the time history

will tend to approach the shape of the radiation case curve

as indicated in figure 12-6.

Low Heating Rate Re-entry

In this section the effects of single and double sur-

face radiation in combination with the heat absorption

capabilities of beryllium and nickel for the low heat rate

data of figure 12-1a are presented.

6
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Equation (12.4-3) is used for the following cases

although the actual calculations were made by means of

equation (12.h-k) or minor modifications of (12.[_-k). The

cases calculated for illustration are shown in figure 12-8

and listed in the followin< table:

Material W/A Type Radiation

Be ryll ium 2.0 sing le

Beryllium 2.0 double

Beryllium 1.0 double

Nickel 1.0 double

Nickel and 1.0 for double

Beryllium each

Curve No.

a

b

C

d

e

Several conclusions may immediately be drawn.

a. The maximum temperature reached for single sur-

face radiation as compared to double surface

radiation (curves 12-8a and 12-8b) is only

about 200 ° higher for beryllium.

b. A W/A = 1 for beryllium, curve 12-8c re8ches a

150 ° hi_her than the W/A = 2temperature only

for beryllium, curve (b), suggesting that an

efficient way of nan@ling the heat input is by

radiation.

c. The observation of (b] above is born out by con-

sideratlcn of curves (d) and (e) where curve (d)

can be considered a nickel structure with skin

wei_ht of i ib/ft 2 the tempereture of which is not
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materially effected by the addition of a

1.0 ib/ft 2 beryllium heat shield as shown

in curve (e).

A rapid temperature rise for the nickel skin occurs

early in the time history allowing the structure to radiate

a large portion of the heat input.

12.7 Heat Shield vs Radiator

The decision as to the most efficient type of heat dis-

sipation to use to keep the all up aircraft or capsule weight

within reasonable bounds depends, of course, on the type of

heat input as previously demonstrated. One more figure will

be presented to belabor this point for the last time. In

figure 12-9 the effectiveness of heat shielding for the two

types of heat input used is shown. The solid curves

correspond to an unprotected nickel structure while the dash-

ed curves have a 1 lb/ft 2 heat shield of beryllium added.

figure 12-1b data the heat shield reduces the maximum temper-

ature about 350°F, but for the slow heating rate data of

figure 12-1a the temperature drop is only about 70°F and

the structural weight has been unnecessarily penalized. Of

course, the maximum allowable structural temperature must

also be considered in deciding upon the most efficient form

of heat protection including the use of insulating or ablat-

ing materials,

4 8<
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12.8 Insulators and Conductors

The solution of heat protection problems involving

insulators is a considerably more complex problem than any-

thing discussed so far. The general differential ecua[c'.

which must be solved is

3 %) tJ 3t i

If the conductivity k is assumed to be constant, an,_. :_

substance is homogeneous and isotropic, the equation for

an infinite slab i,e., one directional heat flow becomes

We _X z ._ _ (12.8-2)

Numerical methods have been developed which make the

application of equation (12.8-2) to practical cases some-

what easier. The following is from reference 1 and is based

on the "General Numerical Method of Dusinberre". Figure

12-10 shows the cross section of a large slab of thickness

x divided into 4 equal slices of Ax each. The heat

balance for the cross hatched zone a b c d is written as

k(n--r,)_ k(-r,-u) = - -r,)
A'X z_ _4: (12.8-3)

by using

and
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and

lapse of time At.

Equation (12.8-3) may be solved for

. To
M

is the new temperature at plane I after a

where

(12.8-4)

I believe that quite accurate solutions may be obtained

using equations of the type of (12.8-_) if M is kept large

by using small values of At.

Constant Heating Rate

If the conductor or insulator in this case is assumed

to have a specific heat of zero, zero emissivity, and a

constant heating rate input the heat balance for the conductor

may be written as

_: k A (To-T,)
X

(ze.9-1)
A x

For a specified thickness of insulation x the temperature

gradient (T o - Tl) which can be maintained is only a function

of the heating rate factor q/A "

Equation (12.8-k) is most useful for home insulation purposes.

4_0<
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Cases with Heat Transfer at a Surface

The steady conduction case occurs only infrequently

in aerodynamic problems and the Dusinberre numberical method

of solution previously given has to be modified to account

for a variable heat input and changes in the heat balance

equation due to radiation.

To handle this case figure 12-10 may again be referred

to and a heat balance on the half slice O_o is written

_ _ = ,,_<_,_0-;-rD+ k(To-_,)+_,(T_')'_
6"X (12.10-i)

where q/A

the right is

transmitted and the third term the heat radiated.

As an approximation the term

is the variable heat input, the first term on

the heat absorbed, the second term the heat

I
Tp-T v --T o -To

(12.10-2)

Thus eauation (12.10-1) becomes

____: _A (_'-To)+ k(T_-T,) + E _'(T_')*
A A _ _x

Equation (12.10-2) is solved for T 1 by the equation

___ + ToC:P-Q) +-'F, Q = PT; + e'_ ('To') +
A

(12.10-3)
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As an illustrative example use an insulator 3 inches

thick with 3 slices

= . I _ BTU i .

°F/ t

c : .iz 13T0 ,

Ib de_lF

then

A z:t

= . I'_Y, 12.

equation (12.10-3) becomes

& -+ (.018-.ooo43_)'Fo't-.ooo4_ _

3 x. Iz

20

= .00043_

.018

=.olSTd + ._8o7(Jo11@
_,JO00

01"

_f._ff __ + • 97_% t.oz4 TI
A

= + 21.15"o ,o
Iooo

(12.10-k)

Eouation (12.10-2) serves for the determination of the

surface temperature To I

the time of interest and

for the previous time.

To determine the temperature

made of the Dusinberre equation (12.7-h.).

using the heating rate q/A at

T o and T I which were determined

TI direct use may be

For the example

chosen

411-_1<
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11_ × BI5
_t _

x.lZ BTU x I , _.
Ib °F" . j_ B'Tu

h,"B

= ._.T&? x 3(=oo =
17-

and equation (12.7-3} becomes

_'= To + 81,o7_ +v_

_.©7 (12.10-5)

similarly T21 becomes

= -r,
3,o7

(12.10-6]

The temperature T 3 must be established on the basis

of a heat balance equation similar to equation (12.10-2).

If the rear surface is assumed to radiate heat at its temper-

ature T3 the heat balance for the last slice may be written

(12.10-7)

Using the same properties of the insulator as were used

previously

(12.10-8

now all necessary equations have been written and the temper-

atures To l, T1 l, T2 l, and T31 may be solved for in a

433<
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step by step process using equations (12.10-4), (12.10-_),

(12.10-6)and(12.10-8). An illustrative example of re-

sults of the numerical procedure is shown in figure 12-11

where the initial heat input is that of figure 12-1b and

the time interval chosen is l0 sec.

Changing the number of temperature calculating stations

has an effect on the calculations which should be investi-

gated before the procedure is adopted. The surface temper-

ature gradually approeches the equilibrium radiation temper-

ature and the rear face temperature decreases as the number

of stations increases.

The insulator is a very effective way to handle heat

inputs but there is a weight penalty involved. The

insulator used in the present example which keeps the rear

surface temperature to less than 600°R weighs 9 Ibs/ft 2.

Ecuations have been presented which may be used to

obtain temperature time histories for any combination of

heat shields and insulators which include the effects of

transient conduction, radiation and variable heat inputs.

The only restrictions to the equations are that they are

one-aimensional and numerical procedures must be used thus

producing some variation in results dependent upon the size

of the time intervals used and the number of intermediate

temperatures determined.

A recent report, reference 2, presents a method of

calculating the temperature distribution of thick walls

which uses time series and the response to a unit triangle

434<
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variation of surface temperature. Details of use of

the method for cases involving surface radiation are

not given for the case where the surface temperature

is unknown.

4&S<
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i.

.
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SECTION XIII

PROPERTIES OF HIGH-TEMPERATURE MATERIALS

General.

In flight through the atmosphere, compression of the

air layer around the body heats the air and the body. The

temperature of the heated air increases roughly as the

square of the increase in speed, and the heat transferred

from the hot air to the body becomes a problem above M _ 2.

For a perfect gas, the temperature of the hot-air layer a-

round the body (boundary layer) is given approximately by

TB.L. _ Tatmosphere (1 + 1/5 M 2) and even at high altitudes

Tatmosphere _ 500°F so that at M = 5 the boundary layer

temperature is > 2,000°R and at M = lO the boundary layer

temperature is _ 7,000 - 8,000°R. The actual boundary layer

temperatures are somewhat less, due to a number of factors,

but flight at M_6 will melt _n_ _ _i_+............ _ at M_I2 will

melt all known substances, neglecting body radiation. This

does not mean that it is impossible to fly at M = 6 or 12,

since other factors such as duration of flightp shape of noses

and wings, artlflcal cooling, and beneficial body radiation

enter the picture. It does mean, however, that disaster lurks

continually for the unwary and that prodigious effort and

ingenuity are required for hypersonic (M_5) flight in the

atmosphere. Everyone is familiar with the fiery trails of

meteors and with the fact that many of the meteors are
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metallic. The meteors are fiery because they are burned

up by air friction. Meteor velocities on entering the

atmosphere range from M_25 - 30 upward and these speeds

are only about twice the M_12 - 15 speeds that can be

achieved by pilotless vehicles at present.

The foregoing serves to point out that vehicle speeds

which can be achieved at present are great enough to cause

rapid destruction of the vehicle and occupants due to heat-

ing from air friction. Since sustained flight at M_

will melt magnesium and aluminum and at M_6 will melt steel

it is clear that speeds of M_lO - 15 will require more

exotic materials having a high melting point, plus probably

artifical cooling, plus in some cases possibly controlled

destruction of parts of the vehicle to take advantage of the

beneficial cooling resulting from material destruction. The

rest of the discussion will deal only with some of the high-

temperature materials, some effects of temperature on materials

properties, and some uses of materials in high-speed vehicles.

Materials.

The existence of high temperature materials has been known

for many years. The discovery of carbon occurred in pre-

historic times. Tungsten, platinum, and molybdenum were

discovered in the 1700's. Tantalum, Niobium, Beryllium, and

Rhodium were discovered in the 1800's. Rhenium was discover-

ed in 1925. Unfortunately. most of the high temperature
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materials are cuite hard and brittle and are thus unwork-

able. In addition, most of them are expensive to produce

and the lack of a commercial demand has prevented the

lengthy research and development that will be necessary to

produce more usable forms of these materials. As a result,

most of these materials have remained laboratory curiosities.

However, within the past 3 or h years extensive and intensive

research and development efforts have been applied to the

field of high temperature materials and alloys, and it is

booed that this ccotinuing effort will pay off with new

materials or more-workable forms of the known materials.

13.1.1 Melting Temperatures.

The majority of the elements are shown in figure i,

with meltinz temperature plotted against molecular weight.

The elements are divided into the periodic groups and the

meltin5 temperature has been plotted against increasing

rnnl_l _ ...._+ "_*_- ^ach group. _ is immediately

apparent that the melting temperature varies at random with

molecular weight and with periodic group. Figure 13-1

serves to illustrate that there doesn't seem to be a reason-

able relation between the melting temperature and the prop-

erties of the elements. However, figure 13-1(a) does show

that the high-meltin_z elements appear to be grouped roughly

around the molecular weights of 12, h8, 96, and 192; the

significance of this grouping is not apparent. As far as

can be determined, there does not seem to be any correlation
r
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between melting temperature and physical or chemical

properties of the elements.

Compound s.

Few of the elements are hsed in their pure form, and

it is of some interest to list the elements and their

corresponding refractory compounds that may have high-

temperatures uses. The majority of the elements are listed

in Table 13-1 in order of decreasing melting temperatures,

and the meltin_ temperature of a number of their known com-

pounds that melt above 2,500°F are listed. There are three

main items of interest in Table 13-1.

(i) Two of the carbides are the highest-melting

two-element compounds known and their melting-temper-

atures are several hundred degrees higher than either

of the constituent elements.

(2) Over half of the compounds have higher melt-

ing temperatures than either of the constituent elements.

(3) The carbides and nitrides tend to have the

highest melting points, averaging about i,700°F.

Some Oxides.

Some of the oxides that melt above 4,000°F are listed

in Table 13- 2 (a) in decreasing order of melting temperature,

and qualitative information on their oxidation and thermal

4SI<
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shock resistance are included. It should be stressed that

the oxidation resistance in particular is qualitative, since

the oxides as a class are generally considered to have in-

different or poor resistance to oxidation because most of

the oxides tend to be somewhat porous. A body made entirely

of an oxide would, of course, be completely oxidation re-

sistant with the exception of the few oxides that change to

higher forms under heat and a generous supply of oxygen.

Most refractories are too weak and brittle for load-carrylng

applications, so that their main use is as a protective coat-

ing over a strong, but oxidation-prone strength member. For

coating aoplicetions, then, the porosity of the protective

coating is of paramount importance since a porous coat allows

the free oxygen of the air to attack the load-carrying "pro-

tected" member.

The thermal shock resistance is roughly tied to the

thermal conductivity and expansion characteristics of a

material. Thermal shock is a descriptive phrase used to

indicate the break-up of a material from uneven temperature

distributions, and broadly speaking comes about because of

the material's inability to conduct heat away from a hot

spot coupled with a tendency to expand when hot. Thus, a

material with bad thermal shock properties, when heated on

one face while the other face remains unheated except for

conduction from the hot face, expands at the hot face and

breaks up the cooler portions because the relatively poor
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conductivity keeps the heat from equalizing throughout

the material.

It can be seen from Table 13-2 that the oxides tend to

break up under transient heating. The oxides, then, as a

class for general application are not too highly regarded

for high temperature protective coatings or as homogeneous

bodies for transient-heating applications.

13.1.4 Some Carbides.

Listed in Table 13-2 (b) are some carbides that melt

above h,000°F, and some information on their qualitative re-

sistance to oxidation and thermal shock is included. The

oxidation and thermal shock properties are not well known

for the carbides. As noted in Table 13-1, the highest-

melting compound known, Hafnium carbide, is found among the

carbides. From melting considerations only, a m_ssile made

entirely of HfC could fly indefinitely at M = 12.

The carbides are characterized by extreme hardness,

and they have been used for years as abrasive grits on

grinding wheels and as cutting tool tips and masonry drill

tips. Tungsten carbide is perhaps the best known of the

carbides for these applications.

The use of carbides for bodies and protective coating

has not met with unqualified success. The carbides are very

hard and almost impossible to shape or work, and generally

are quite brittle; these qualities tend to discourage their

453<
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use as refractory bodies. Their brittleness makes them

less desirable as protective coatings, but it is felt that

there is room for considerable progress in developing car-

bides with good high-temperature characteristics. The PARD

Vapor-Desposition Laboratory plans to spend some time in

basic research into the carbides to be used as protective

coatings.

There is a tendency to think of a carbide as a coat-

ing on carbon, but carbides may be formed on many materials

such as tantalum, ziconium, titanium, tungsten, etc.

Some Borides.

Several borides are listed in Table 13-2 (c), and the

most outstanding characteristic of the borides is the lack

of knowledge concerning their properties. All of the borides

contain boron, and the literature indicates that there is

little commercial use for the pure boron; most boron uses are

as compounds in mild antiseptics, washing powers, and enamels

and glasses for covering refrigerators and the llke.

Several of the borides have attractive melting temper-

atures (ranging up to 5,500°F) and more intensive research

may reveal other useful high-temperature properties. As of

the present, however, the borldes are more a laboratory

curiosity than useful products.

The borides are generally quite hard and brittle, and

one investigator postulates that some of the borides may

become superconductive (electri_ally) at high temperature

4S4 <
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and may thus be useful as a temperature-sensing element.

Some Nitrides.

Several nitrides that melt above 4_,O00°F are listed

in Table 13-2 (d). The general information available in-

dicates that several of the nitrides have good thermal shock

properties, but their oxidation resistance is either generally

unknown or thought to be poor.

The higher-melting nitrides are metallic in appearance

and range in color from gold (ZrN) to gray (TAN). The

nitrides tend to be quite brittle and hard, although one

source reports that TaN at high temperature is about as

soft as copper is at room temperature.

There is a scarcity of data in the literature concern-

ing the use of nitrides as refractory bodies or coatings.

This lack of interest may be due to the inherent hardness and

brittlesness of the nitrides.

Some Other Refractories.

Table 13-2 (e) lists several other refractories

thought to have good oxidation resistance. The lowest-melt-

ing refractory, MoSi 2, has been included because the author

has some knowledge of the behavior of MoSi 2 from personal

experience. MoSi 2 at about 3,000°F has good oxidation re-

sistance. A molybdenum model coated with MoSi 2 was tested

in the PARD hot air Jet and lasted for nearly lO minutes while

.455<
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the uncoated model lasted about 6 seconds.

Temperature Effects.

In general, it may be stated that things get worse as

the temperature increases. There are certain exceptions to

this rule, such as the increasing e.m.f, with increasing

temperature for thermocouples and the increasing emissivity

wish increasing temperature characteristic of many materials.

Effect of Temperature on Strength.

The strength of a material usually goes to pot when

the material gets hot. The effects of temperature on the

strength of a few "high-temperature" materials are shown in

figure 13-2. These "high-temperature" materials are basic-

ally Ni-Cr-Fe alloys except for the 0.5% Ti-Mo which is

almost pure molybdenum. It can be seen in figure 13-2 (a)

tha= most of the materials have lost about half their

ultimate strength at 1,600°F or below, and in general this

is the story of material commonly used for load-carrying

members in aircraft and missiles; airframes have to be

"beefed up" and far over-strength at ordinary temperatures

so they will be strong enough when heated up by high flight

speeds. One of the significant things to be seen in figure

13-2 (a) is the strength of the molybdenum alloyed with

0.5% titanium, even at high temperatures. Molybden_nn un-

fortunately oxidizes badly above 1,300 - 1,_O0°F and

catastrophically at 1,800 - 2,000°F and this one character-

istic has been (and still is) a major reason for not being

dSG<
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able to utilize the high-temperature strength of molybdenum.

A hlgh-temperature protective coating that is tightly bonded,

oxidation resistant, self-heallng, and ductile for molybdenum

would permit the utilization of its great hlgh-temperature

strength.

Figure 13-2 (b) shows the effects of temperature on the

lO0-hour-rupture strength of stainless steel, several super-

strength alloys, and molybdenum. It is obvious that high

temperatures drastically reduce the allowable loading. Again,

the alloyed molybdenum shows a considerable advantage,

assuming of course that some means of protecting the molybden-

um from oxidation can be found.

If the highest temperature that a structure will reach

is not more than 1,100 - 1,200°F, figure 13-3 shows that

beryllium is an attractive material. The upper part of

figure 13-3 shows the relative weight of a thln-wall structure

plotted against atomic number of the material of construction

for room temperature. The weight of the structure when made

of aluminum is the base for comparison. The lower part of

figure 13-3 is the same type of plot, except that the temper-

ature is 1,200°F and a steel structure is the base for com-

paris on.

It can be seen that at room temperature several materials

are better than aluminum purely on a strength basis. At

1,200°F many of the materials are no longer usable. It is

interesting to note that beryllium appears to be an excellent

material at both temperatures. These comparisons are on a
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strength basis alone and do not consider cost, workability,

availability, and oxidation effects.

Effect of Temperature on Thermal Conductivity

Figure 13-h (a) shows that in general the thermal

conductivity generally tends to decrease with increasing

temperature. There are enough exceptions to this to generate

plenty of argument. A decreasing conductivity with increas-

ing temperature is advantageous from an insulation viewpoint

but disadvantageous from a thermal shock viewpoint unless

the expansion rate also decreases.

It may be noted from figure 13-_ (a) that copper and

silver are _,000 - 6,000 times more conductive (thermally)

than some of the better insulators. This might indicate

that of course copper and silver would be worthless as in-

sulators and indeed they are if the generally-accepted de-

finition of insulation is used. However, there are some

special cases where copper is used as an "insulator" and this

will be discussed in the Heat Sink section of this discussion.

It is seen in figure 13-4 (a) that most of the usual

airframe materials and the refractories have about the same

order of magnitude of conductivity as indicated by the cross-

hatched areas at the bottom of the figure, although there are

exceptions to this.

Figure 13-4 (b) shows the effect of temperature on the

thermal conductivity of several refractories. ZrO 2 (zirconia)

has a rather low conductivity and Be0 (beryllia) has a high

8. I...I
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conductivity which decreases rapidly with increasing

temperature. These refractories show an almost consistent

decrease of conductivity with increasing temperature.*

Some of these refractories such as ZrO 2 and A1203 have low

enough conductivity to make them attractive as insulators

in certain flight applications. In general, however, the

refractories are fairly dense and are not thought of as

efficient insulators because of their weight; it is usually

more efficient to use the so-called insulators which are

lightweight and have relatively low conductivity.

Figure 13-4 (c) shows the effect of temperature on the

thermal conductivity of several insulators that are suitable

for high temperature application, and the conductivity curve

for air is included for comparison. In contrast to the

refractories shown in figure 13-4 (b), the insulators show

an increasing conductivity with increasing temperature. All

of the insulators shown (except air) are made of fibrous

materials surrounded by air spaces, and this construction is

typical of the llght-weight insulators. As an item of

interest, the thermoflex is actually a refractory (A1203 •

SiO 2) in fibrous form.

• Some sketchy information indicates that porous refractories

may tend to show an upward trend of thermal conductivity

with temperature beginning at about 2,000°F, due to
radiation across the internal air spaces.
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At low temperatures, air is a good insulator and a

vacuum is considered to be almost a perfect insulator. How-

ever, at temperatures above 1,%00 - 2,000°F, neither air nor

a vacuum are good insulators because of the radiation. At

2,000°F, for example, the heat conducted across a 1 foot

thick airspace would be about 0.0_ Btu/ft2-sec but the heat

radiated from the ho_ surface to the cool surface could be

as much as 1% or 16 Btu/ft2-sec. If the space were a vacuum

the conduction would be absent but the radiation would still

be 1% or 16 Btu/ft2-sec. On the other hand, a fibrous type

insulation such as quartz fibers would have a total conducti-

vity of .0% or .06 Btu/ft2-sec since the solid materials

effectively block radiation.

The selection of a certain type of insulation for a

particular application is not a straight forward cut-and-

dried process. Assuming that the insulation will take the

temperature, there must be a consideration of such things am

conductivity, difficulty of holding the insulation in place,

tendency of the insulation to vitrefy and compact, and the

weight of the entire insulation assembly. In some cases, such

as for missile noses and wing leading edges, it may be better

to use one of the relatively heavy refractory seml-lnsulators

such as Zr02.

The difficulty of insulating a high speed flight vehicle

is compounded to a staggering degree by the weight restrictions

/

J
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imposed. At the present time no one can be positive about

the allowable weight of insulation, but there seems to be

a sort of tacit agreement that about 2 - 3 lb/ft 2 is near

upper limit. At 3 lb/ft2? a 3-foot-diameter vehiclethe

25 feet long would require 500 - 600 lbs of insulation on

the body alone.

Effect of Temperature on Specific Heat.

The specific heat is the ability of a materSal to store

heat, and generally a high value is desirable because a high

specific heat means a relatively low temperature rise for a

given heat input.

Figure 13-5 shows that most materials have a higher

specific heat at high temperatures than at low temperatures

and that the curves tend to keep rising with temperature.

Graphite has a different trend, with a highest value at

about 2,000°F.

As can be seen by comparing figure 13-5 with figure

13-4 (a), there is not such a wide variation of specific

heat between materials as was shown for thermal conductivity.

Effect of Temperature on Emissivity.

The emissivity of a material is a measure of its ability

to radiate heat. A perfect radiator is called a "black body"

and has an emissivity of 1.0 and a body that does not radiate

any energy has an emissivity of zero; thus, all materials
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have emissivities between 1.0 and 0.0. The desirability

of having a high or low emissivity depends on the function

of the material. In general, materials considered for

high speed missile skins should have a high emissivity so

that when the skin heats up it will radiate to space and

tend to "cool" the skin. For example, a skin having a

heat input of 8 Btu/ft2-sec will come to equilibrium at

1,600°F for _ = 1 and at 2,600°F for C = 0.2. There is

no known perfect radiator ( _ = l) but graphite comes close

.75( _ _ .95 -.96 according to some investigators;

- .78 according to others).

Figure 13-6 (a) shows the effect of temperature on the

emissivity of a few selected materials. It can be seen that

in general the emissivity tends to increase with temperature

increases.

Figure 13-6 (b) shows the effect of temperature on the

emissivity of Inconel which has had various previous heat

treatments. Since emissivity is essentially a surface

phenomenon, changing the surface conditions (roughness) of

a material will generally change the emissivity. In general,

surfaces that appear dark to the eye under ordinary light

have a high value of _ because absorbtivity and emissivity

are the same thing. Conversely, surfaces that appear bright

to the eye under ordinary lighting are poor radiators (but

good reflectors)•
462<
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13.2.5 Effect of Temperature on Oxidation.

There appears to be a considerable store of knowledge

concerning the oxidation of many materials in various

atmospheres near room temperature. However, oxidation be-

havior at high temperatures particularily in the presence

of a high speed airstream is little understood and sparsely

documented. The oxidation problem is a serious one for high

speed vehicles and is attracting considerable interest. The

reason that oxidation is important is that practically all

materials (except the oxides) are prone to oxidation and

heat is almost always given off in the oxidation process.

This heat liberated tends to heat the material to higher

temperature where the oxidation reaction is accelerated. In

some cases a high speed oxidation reaction may set in that

is self-regenerative and violent enough to destroy the

material in a matter of seconds. A familiar example of

oxidation is the operation of the oxy-acetylene cutting torch

which works on the principle of heating the material to be cut

to 1500OF and then impinging on the hot metal a Jet of oxygen.

Steel plate 12" to h8" thick can be cut at 2" to 6" per minute

by this method. Flame machining is also done, using the

principle of material removal by surface oxidation; metals

may be oxidized in this process at the rate of lO lb - l_ lb

per minute.
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The oxidation of materials in high speed flight in

air is not well understood or predictable. It is a serious

problem, as evidenced by the fact that molybdenum (M.P.

h700°F) will break into flaming destruction at 2800°F in a

supersonic air jet and steel (M.P. 2800°F) has been made to

flame like a torch in a 600°F supersonic air jet when the

steel was preheated with a torch to red heat.

Figure 13-7 (a) shows some effects of temperature on

the oxidation of SiC powder and some effects of adding

water vapor to the air when the temperature is held at

about 2000°F. It is seen that higher temperatures aggravate

the oxidation problem for SiC powder, and this is generally

true for other materials. The magnitude of darbon lost in

the upper part of figure 13-7 (a) is not of paramount

importance from a fllght-vehicle standpoint since missile

skins will not be made of powder. The size of the powder

......... o ............................. rata;

everyone is familiar with the explosions of dust-laden air.

Figure 13-7 (b) shows the effects of temperature on the

oxidation rate of molybdenum which has a melting temperature

of about h700°F. It is interesting to note the large Jump

in oxidation rate in going from 1350°F to 1500°F. This is

due to the behavior of MoO 3 which is formed as a solid

oxide below 1350°F but which melts at about 1350°F and in-

creases the oxidation rate manyfold of the remaining molybdenum.
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There are many forms of oxides formed on materials such

as titanium, steel, aluminum, molybdenum, tungsten, etc.

Some of the oxides are relatively hard and impervious and

tend to retard further oxidation once a thin oxide layer has

formed, aluminum being an example of such protective oxidation.

Other oxides are too fragile to provide any protection, such

as the iron oxides.

Uses and Arrangements.

No attempt will be made to cover all of the uses and

arrangements of materials for high temperature use in high

speed vehicles. The protection of missiles from high temper-

atures by use of insulation and "heat sinks" will be dis-

cussed briefly as illustrations.

Insulation.

In insulating an object, a layer of low-conductlvity

material is placed between the hot gases and the object.

Any object can be kept at near room temperature for hours

even when surrounded by gases at 5000°F if there are no

restrictions concerning the cost or weight of the insulation;

for example, an aluminum plate 1/lO inch thick protected from

5000°F gases by 150 feet of firebrick will rise from 32°F to

room temperature in about _ hours.

The effect of insulation is to delay the temperature

rise of such vehicle components as the load-carrying members,

electronic instruments, and the inhabitants. Insulation

 165<
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keeps the inside cool only in a relative sense, in that

regardless of how much insulation is used the entire vehicle

will finally come to an equilibrium temperature unless some

sort of cooling scheme is used. This equilibrium temperature

may be 2000°F or higher, and it is obvious that insulation

is used only to delay the temperature rise of the interior

of the vehicle for a reasonable time so that the vehicle can

perform its intended function.

Figure 13-8 shows the qualitative effect of insulation

on the flight time of a hypothetical missile in the atmosphere.

It can be seen that a thicker insulation extends the flight

time, a fact that would be intuitively clear. The obvious

conclusion to draw from this figure is that the flight time

could be extended at will by using thicker and thicker in-

sulation, and this is true to a very limited extent. However,

the one factor that makes the insulation problem so difficult

is that the weight of the insulation and insulation-support-

ing structure quickly mount to several pounds per square foot

and such added weights are intolerable. It seems generally

agreed that the weight of the insulating structure for high

speed flight vehicles will have to be less than about 2 to 3

ib/ft 2 and this weight immediately translates into insulation

thicknesses of the order of a few inches and flight times of

a few minutes. The problem of insulation is a back-breaker

and a number of people are at this minute racking their

brains trying to solve it.
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13.3.2 Heat Sink.

Another method of using materials to protect against

high temperatures is the so-called "heat sink" approach

which might also be generally thought of as insulation. In

the heat-sink arrangement, the material's ability to store

heat is of primary importance. The theory of the heat sink

is as follows: the high-heat input areas of a high speed

vehicle ere covered on the outside with a material which

has a high heat capacity per degree temperature rise and m

conductivity high enough to carry the heat to the interior

of the heat sink material. The heat input to the skin is

absorbed in raising the temperature of the heat-sink material

instead of being conducted to the interior of the vehicle.

It is desirable that the heat-sink material have a conduc-

tivity Just high enough to prevent surface melting, and

this necessary conductivity of course varies with the heat

input rate.

Figure 13-9 (a) shows a comparison of several convention-

al materials on the basis of time to start melting at vario;Is

heat input rates for an infinitely-thick slab. For a given

heat input, the time to start melting is a function of the

material heat capacity, conductivity, and melting tempera-

ture. It is interesting to note that copper ranks quite

high although its melting temperature is relatively low

(about 1900°F); the reason it ranks high is because of its
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heat capacity and conductivity. Molybdenum is one of the

highest-ranking materials but is less attractive than copper

because of brittleness and oxidation characteristics.

In using a material as a heat sink, it would seem that

the thicker the material the longer it would take to start

melting. This is true Only up to a certain point, as will

be shown by figure 13-9 (b). In this figure thin plates of

Inconel are considered, and it is surprising to note that

there is little reason for using thicknesses greater than

i/_" to 1/2" except for very low heating rates. The reason

for this is that Inconel conductivity is relatively low and

at moderate to high heating rates the surface heat cannot be

conducted away fast enough to keep the surface from melting.

Figure 13-9 (c) shows the same type of plot for copper.

The main point from this figure is that the greater conduc-

tivity of copper allows more surface heat to be conducted

Aw_v _ _h_ m_xlmi_m thickness of coooer would be of the

order of 2" to 3".

Ablation.

The process of removal of surface material from a

vehicle in flight, through heating and the scrubbing action

of the boundary layer, is called ablation. The process of

ablation thus includes melting, boiling, sublimation, and the

removal of material in the form of discrete particles.

Ablation is the controlled destruction of a vehicle surface
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so as to use up heat supplied by the boundary layer

and thus cool the vehicle.

A good ablating material must have a low thermal

conductivity so that the surface will remain much hotter

than the interior and thus the ablation process will be

confined to the surface. A further requirement is that

this material have good thermal shock properties; i.e.,

the material will resist breakup due to large thermal

gradients. It goes without saying_ of course, that such

a material will not oxidize exothermically and supply

additional heat to the unablated portion.

Surprisingly enough, a number of materials meet the

above requirements to some degree. Even mo_e surprising,

some good ablation materials have a low melting temperature.

Nylon, for example, with a softening temperature of hOO-500°F

is attractive from an ablation viewpoint.

The cooling achieved by the ablation process comes

mainly from the following:

(1) Raising the material surface temperature to the

melting or subliming point. This is generally a very

small part of the total heat carried away by the

ablation process.

(2) Changing the material state, from a solid to a

gas or a solid to a liquid and to a gas, without a

change in temperature. In most cases, this is not a

L169<
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large part of the total heat carried away by

the ablation process.

(3) Mixing of the relatively cool gases from the

ablating material with the hot boundary layer. This

results in a cooler boundary layer next to the

ablating surface, and the heat transferred to the

surface is lowered. This process in many cases

accounts for a large part of the total heat carried

away by the ablation process.

The desired effect of the ablation process is to keep

the underlying structure from getting too hot. The under-

lying structure receives heat by conduction through the

ablating material and the heat conducted is a linear function

of the outside surface temperature of the ablation material.

A good ablation material will have an essentially-constant

surface temperature for a wide range of boundary layer temper-

tures and heat transfer rates, since an increase in heat

transfer rate to the outside of the ablating surface will re-

sult in more Ibs/sec of ablating material being boiled away

rather than an increase in surface temperature.

Suggested reading: (I) "Sublimation," Aircraft and

Missile Engineering, Feb., 1958; (2) Aviation Week, pp 52 et.

seq., May 12, 1958

Figure 13-10 shows the calculated effectiveness of

beryllium oxide and plexiglass used as ablating materials.



Melts Below 2500 °F
xx Not Given

TABLE 13-1

This compound melts
at higher temp. than
either constituent

NAME SYMBOL MELT TEMP.°F OXIDE BORIDE CARBIDE NITRIDE SILICIDE SULFIDE

Carbon C 6700
Tungsten W 6170 2683 5288 5184 -- 3956 --
Rhenium Re 5740 < ...... _3092 --
Tantalum Ta 5425 3434 3632 _ 5396 3992 --

Osmium Os 4900 ..........
Molybdenum Mo 4760 < 3956 4874 3686 •
Ruthenium Ru 4500 ..........

Iridium Ir 5450 ...... _A_A _ "-
C olumb ium Cb 4380 3222 )3632 6332 3707 --
Boron B 4200 ( -- 4442 _ "-

Rhodium Rh 3570 ............
Chromium Cr 3430 _ 3632 3434 -- 2795 2822

Thulium Tm 3400 xx

Titanium Ti 3300 _ _ 5684 _ 2804Zirconium Zr 3200 _ 638 6 27 68

Platinum Pt .3230 ............
Lutecium Lu 3100 xx

Vanadium V 3150 ....
Iron Fe 2800 2822 3002 ....
Palladium Pd 2830 ........ 2552 --
Yttrium Y 2700 4370 ........ 3497

Ytterbium Yb 2700 xx
Cobalt Co 2720 _ ...... _

Erbium Er 2650 xx

Dysprosium Dy 2600 xx

Holmium Ho 2650

Nickel Ni 2650 _ _ .... _ ""Silicon Si 2600 -- 3812 -- _

Gadolinium Gd 2500
Beryllium Be 2340 _ -- 3902 _ ....
Samarium Sm 2370 ..........
Scandium Sc 2190 ...... _ ....

Manganese Mn 2270 _ -- 2768 ....

Europium Eu ,2100 xx

Copper Cu 1980 xx
Gold Au 1945 xx

Silver Ag 1760 xx
Germanium Ge 1760 xx

Praseodymium Pr 1700 xx



TABLE13-1 CONTINUED

Melts Below2500°F
xx Not Given

[k-k-k-_This compound melts

at higher temp. than
either constituent

NAME SYMBOL MELT TEMP. OF OXIDE BORIDE CARBIDE NITRIDE SILICIDE SULFIDE

Calcium Ca 1560 _)3812 4172 ......
Neodymium Nd 15hO
Cerium Ce 1500 35_2_}3812 ......

Strontium Sr lh20 _3812 _3501 .... >
_arium Ba 1300 )3812 _3236 ....

Magnesium Mg 1202 _ < ....
Aluminum A1 1220 < 5072 _ --
Antimony Sb 1170 xx

Lanthanum La 1519 ___ _3812 ........
Zinc Zn 787 XX
Tellurium Te 8h0 XX
Cadmium Cd 609 xx
Terbium Tb 621 xx
Lead Pb 621 xx

Thallium TI 572 xx
Tin Sn h_9 xx
Bismuth Bi 520 xx
Selenium Se h28 XX

Li_hi_m Li 367 xx
Indium In 313 _ ..........
Sodium Na 207 xx
Sulfur S 246 xx

Iodine I 237 xx
Potassium K I_5 xx
Rubidium Rb 102 xx

Gallium Ga 85 _ ........ <
Phosphorus P iii xx
Cesium Cs 82 xx

Bromine Br 19 xx
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SECTION 14

SOLAR SYSTEM

A s_u_: o!" space technology would not be complete without some reference

berne m:uLe t_.the .ue.mbersof our own solar system. Since there are complete

books dealing with the various aspects of this subject the following notes

are more in the category of a mmmmry of the available information covering

the physical make-up of our solar system. For details and/or a more complete

understanding oC a particular point one of the references listed at the end

of these notes may be consulted.

The notes essentially consist of two parts; the first part belng more

in the nature of a general discussion of the members of the solar system;

•_h[ie the second part contains tabulations of numerical data as well as a

hrlef discussion of terms and coordinate systems used in Astronomy.

The origin of the solar system is still a matter of conjecture.

H_¢ever, it has been fairly well established that our solar system is

merely a s_mll part of a tremendous galaxy made up of countless other bodies

and matter. The galaxy of which our solar system is a part is believed to

be of the spiral type and our system is located about two thirds of the way

out in one of the arms.

It is estimated that the galaxy is 6 x lO17 or 600,000,000,000,000,000

miles in diameter or 98,000 light years. The galactic system rotates in a

clockwise direction as viewed from its north pole (located at the hour angle

= I'__ 4_m, and declination 8 = 2_°). The galactic rotational velocity

in the vicinity of our qun is 178.3 mi/sec. This was determined in 195h.

4S4<



Now the Sun which is the center of our solar system is 33,000 light

years from the galactic center and has a period of revolution about the

galoctic center of 22_000,000 years.

Our solar system is moving with a velocity of 12.9 mi/sec toward an

apex near _- 18h, _ - 30° which is not far from the direction of the

star M Hercules (the end point of the constellation Hercules). The

diameter of our solar system is about 7,_O_O00s000 miles or

0.0000000734 x 1017 miles as compared to 6 x 1017 for the galaxy.

Th_ members of the solar system are generally considered to be the

Sun and the nine planets with their satellites plus many other smaller

bodies called asteroids or planetoids. Also contained in the solar system

are such thlngs as comets, meteor showers and other so called cosmic matter.

These notes will only be concerned with the Sun, planets with their satellites

and the asteroids. The sketch on the next pa@e gives some idea of the

relative sizes of the principal members of the solar system. It is apparent

that the Sun is by far the larges object of our solar system. The planets

are usually grouped as the terrestlal planets (Mercury_ Venus, Earth, and

Mars) and the major planets (Jupiter, Saturnl Uranus_ and NeptuDe). The

planet Pluto is so remote that not much is known about it and of such a

size that it is sometimes classed as a planetoid.

The general discussion of the solar system to follow will first take

the Sun and then each of the planets in order according to their distance

from the Sun.
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Sun

The Sun is the ruler o1" our solar system. Zt ccutrols the motions of

the planets, comets, meteoric bodies, and other satellites. The Sun is a

star. Xt is not the largest or brightest star but it is the nearest one

to us. The next nearest star is 275_000 times as far mra_. Radiatiom of

the Sun is sole source of power, warmth_ acttvity_ and life on Earth t with

the exception of tides and volcanic action.

The diameter of the Sun is al_proximately _,000 miles. It's volume

is 1,300,000 that of E_rth and its mass is 333,000 that of Earth. Its

density is 1.4 times that of water, and gravity at its surface is 3.6

times that at the Earth's surface. Its surface temperature is about

6,000 ° C. and its internal temperature is estimated to be 20,000,000 ° C.

The Sun rotates in the same direction as the Earth on an axis inclined

83 ° to the plane of the ecliptic (equator inclined 7° to ecliptic plane).

The poles of the Sun are directed tovard a point about hal_a_ between the

stars Polaris and Vega. The points coordinates are = . 18h _m, 5 = + _o.

The Sun is of a gaseous nature and its equator turns faster than the

poles. The sidereal rotational period is about 25 da_s at the equator,

27.5 d_ys at lat. -+ 45 ° and about 33 c_ys at .+ 80 °lat.

The rate of the Sun's outpour of energM is expressed as a solar constant

of radiation. The solar constant of radiation is defined as the number

of calories which would be received fr_n the Sun each minute UlX_ a surface

one centimeter square, if the surface were exposed perpendicularly to the

Sun's r_s outside the Earth's atmosphere_ at the EArth's mean distance from

the Sun. The value is 1.94 _ 5 percent. One calorie is the amount of energy

497<
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required to raise the temperature of one gram of pure water at 15° C. to

16° C. It is equal to 4.18 x 107 ergs. The solar constant of radiation

is therefore equal to 1.35 × 106 ergs per square centimeter per second.

The Sun's mass is 2 x 1053 grams. This is equivalent to 1.8 x iO_

ergs of energy. The Sun gives off energy at the rate of 1.2 x 1041 ergs

per year and its mass is diminishing at the rate of 1.3 x 1020 grams or

1.7 x 10I_ tons per year (4,200,000 tons a secomd). If we assume that

all the energy of the Sun is due to destruction of matter, it will continue

to give off energy at this same level and rate for 1.5 x 1013 years

(19 million million).

Taking the intensity of the Sun's light and heat at the Earth's

distance as unity, we have the followlng values of the intensity at the

mean distances of the various planets.

Mercury 6.7 Saturn O.Ol

Venus i.9 Uranus O.003

Earth I.O Neptune O.001

M._ n h3 p_--_- ^

Jupiter O.Ok

Light from the Sun takes _98.6 seconds or 8.31 minutes to reach the Earth.

•" " 4S8<



Mercury

Mercury is the planet nearest the Sun. With tl_e exception of Pluto

and some of the asteroids it has the most highl_ inclined and most eccentric

orbit and the least diameter and mass of any object in our solar system.

Mercury seem to have some sort of atmosphere (at least according to

some observers). Following are ccmnents by Antonlodi, one of the most

able visual observers, canpiled in 19_ using a 33 inch refractor telescope.

(a) The haze on Mercury is whitish; it occurs more frequently and

is denser than that on Mars.

(b) It is rare that a dark surface marking on Mercury retains its

normal intensity for as long as several weeks.

(c) The haze on Mercury presents all degrees of concentration, from

very tenuous to a density sufficient to obliterate the darkest surface

markings.

(d) The haze is usually invisible in the central portions of the

disc but appears chiefly toward the limb (a result of perspective) and

less often near the terminator; near the limb it may extend over an arc

of  ooo km (3ooo mi s).

(e) The changes observed in the haze ma_ be very rapid; 'in a single

da_ dark surface _rkings, 3500 km in size, m_7 disappear completely, while

the opposite ma_ also occur.

(f) _e invisibility of surface markings m_V last _ d_vs.

(g) Light haze m_y cover a region for weeks, with improved and

diminished visibility alternating.

(h) The north pole region, usuall_ clear, once showed a bright haze

for six

o
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(i) One particular dark region, on the equator and at 60 ° longitude

from the sub-polar point (to the right in the image, with South on top),

is much more often covered by haze than any other surface marking; two

regions at the same longitude but at .+40o latitude respectively are

covered less often than the equatorial region mentioned, while the whole

left half of the visible hemisphere is covered still less frequently.

It has been sucgested that the haze described by Antoniodl might be

carbon monoxide plus other inert _ses and cosmic dust due to impacts

(possibly replenished by these impacts). The dust particles being the

reflectors t_t m_kc the haze visible. At any rate the atmosphere of

_rcury _,.st not have much depth since other means of detection have not

yielded _os_tive results.

As far as we know the pl__r.etrotates on its own axis with the same

period as it rcvo!_2s about the C-m o-nd, therefore, the side of Mercury

C_ein_ the _un has a temperat-_re of 68_ ° K. at perihelion and _0 ° K. at

aphelion. T"ne dark hemisphere is intensely cold (I0 ° to - 20° K. ) and tends

+_ _'__,_ out all but thc most vo!otile compounds of the atmosphere.

_ tro.n_it of a _÷ occurs when one _!anet passes between the Sun and

another planet. As far as the Earth is concerned the only planets that can

_ve transit_ are Mercury and Venus. Transits are important astronomically

for observational reasons. The transits of Mercury occur as follows

Date Time C_ Date Time G_

1957 _4_y 9 13 15_6 Nov. 12 16

1960 Nov. 7 9 l_X_3 Nov. 5 16

1970 _y 8 2O 1999 Nov. 15 9

1973 Nov. 9 -°3 • 2003 Nov. 6 19
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Venus

Venus has the most circular orbit of the planets and has about the

same diameter as the Earth. It has high reflectivity and is easily visible

however, not a great deal is known about its surface. This lack of

knowledge about its surface is due to the dense l_yers of clouds and dust

in the atmosphere of Venue.

Visual observations and spectrographic analysis of the atmosphere of

Venus have resulted in the conclusion that carbon dioxide makes up about

90 percent of the atmosphere. There is undoubtedly some nitrogen, argon,

and possibly Cree oxygen. No trace of water has been found.

The atmosphere is estimated to be 6000 mile deep with a CO2 cloud

layer at least i_ miles deep near the surface. There is a haze is.ver about

_000 feet thick near the bottom of the atmosphere with either the planets

qurface or an opaque is_ver beneath. It is believed that the atmosphere

is very dusty (both from cosmic dust and from wind erosion of the surface).

The period of rotation of Venus on its own axis is open to question.

It was originally thought that its period was the same as its period of

revolution around the Sun, however, the latest opinion is that its period

of rotation is about 20-30 d_s. This is partly based on the fact that

the temperature on the bright side (500-60 ° C.) is not too much different

than that on the dark side (-32 ° C.).

The fact that the temperature on the dark side does not approach

-973 ° C. can be partly attributed to atmospheric circulation. However,

this cannot account for all the difference, thus the planet must rotate

slowly on its uwn axis.
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Transits of Venus occur at intervals of 8, 121-1/2, 8, 105-1/2, 8,

121-1/2, 8,years etc. Some dates of transits of interest to us are

Date

1874 Dec. 9

1882 Dec. 6

aO04 Jume 8

20].2 June 6

IS02<
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Earth

The Earth is a mean distance of 92.9 x 106 miles from the Sun. It is

an oblate spheroid having a diameter of 7,927 miles at the equator and

7,900 miles at the poles. The Earth is 29 percent land and 71 percent water.

It travels around the Sun at a velocity of 18.5 miles per second. The mass

of the Earth is 6 x 1021 metric tans or 6.593 x 1021 short tons. The mean

density is 5.52 times that of water and it rotates once in 24 sidereal

hours. The magnetic pole is about 20° from the geographic pole.

The attraction of gravity of the Earth is about 1/190 of itself less

a_ the equator than at the poles. One hundred ninety pounds at the pole

would only weigh 189 pounds at the equator on a spring balance. One pound

out of 289 of this difference is due to centrifugal force, and one pound

out of 555 is due to the Earth's shape.

From Hs_fo_ "Spheroid of 1909" we get the following dimension for

Earth:

F_uatorial radius 3_963._ ,_les

Polar radius 3,949.99 miles

Oblateness 3963. _ - 39_9.99 = _ = O.00_

3963. _ 297

Latitude Length of one degree of arc

o miles

o 68.7o8

13 68.757

3o 68.882

45 69.056

60 69.231

SO < 69. o7
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Note: One statute mile equals 1.1516 times a nautical mile.

Perturbations. of the Earth.- The Earth experiences three detectable

perturbations; precession, nutation, and variation of latitude.

Precession.- Pole moves in a circle. One revolution takes about

25,800 years. Discovered in 120 B.C. by Hipperchus. The rate of rotation

of poles is 50'.'26per year. This precession displaces equinox by about

30° in 2,150 years. That is why the first point of Aries is now in the

constellation Pisces. Star nearest pole _,000 years ago was _ Draconis.

It is nov = Ursae Minoris. In 12,000 years it will be Vega.

Nutations.- Nutations are departures of the poles from perfect

circular motion. They are caused mainly by Sun and Moon. _e largest

effect is the Moon. This lunar effect has a period of 18.6 years and an

amplitude of 9"2 in latitude.

Latitude variation.- Two small effects - o_e with a 14-month period

and the other with a I-year period with amplitudes of about 0:'2 - are

called latitude variations. The 14-month effect is due to the elasticity

of the Earth. The annual effect is due to seasonal displacement of matter

over the Earth. Both discovered by Chandler in 1891 and explained by

Newcomb.

_e
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Perturbatiou of the F_th' s orbit:

1. The line of apsides is revolving eastward at a rate that, if

continued, would carry it entirel_ around in about 108,000

years) it will not continue always at the seine rate.

2. The eccentricity of the orbit which is now 0.016 is diminishing

and will continue to do so for about 24,000 years at which

time it will be about 0.003. It will then increase for some

40,000 years but will never exceed. 0.07.

3. The plane of the orbit is slowly changing posltiou. The value

of obliquity is n_ 23027 ' and is diminishi_ at the rate of

0_5 a year. This decrease will continue for about 15,000 years,

after which the obliquity will increase. It oscillates in this

manner about 195 o_ either side of the mean.

Earth is at perihelion about January 3 and at aphelion about Jul_ 5. The

Earth and the Moou rotate about a ccmnon ayparent center of mass. This

center is about 2_0 miles from the center of the Earth or about 1,000

miles within the surface of the Earth.

The Earth has one knovn satellite.

The Moon

The Moon is about an average of 60 F__-th radii from the Earth. Its

nearest distance is 222,000 miles and its furthest distance is about

253,000 miles from the Earth. The Moon's diameter which lies in a llne

with the Earth is about 2,163 miles. The equatorial diameter (at right

an_es to above)

1 mile shorter.

is about 1/7 mile shorter and the polar diameter is about

The Moon's mass is 1/81.5 that of Earth and its mean density
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is 3.39 that of water. The surface gravity is 1/6 that of the surface

gravity of Earth. It reflects about 7 percent of the light that it receives.

Its sidereal period around the Earth is 2_ 7h 4_ n mad its period

of rotation about its axis is the same as its rotation around the FArth.

The Moon axis is tilted 6.5 ° to its orbit add its orbit is tilted 2O to

the plane of the ecliptic. It rotates and revolves West to East. The

eccentricity of its orbit is 0.056.

The temperature is greater than I00 ° C. on sunlight side and less

than -i_0 ° C. on unlight side. The temperature drops rapidly as Earth

shadow falls on it. Material of Moon, therefore, is a low conductor of

heat and has a low specific heat. _e only substance that we know of

having such properties are loosely packed dust, ash_ coarse pc_er, etc.

The Moon has no atmosphere as we think of an atmosphere and no water.

There is some chance that the heavier gases may be found in some of the

craters and possibly enough moisture to sustain some low types of moss.

Polarization studies indicate that the chemical composition of the

Moon's surface is similar to that of the Earth's crust.

The surface of the Moon is made up of maria, mountains, craters_ rills

and rays. Some of these can be seen in the following pictures.

The maria were originally thought to be seas but actually they are

comparatively flat areas marked by small cratersp hills, and cracks.

Some of the mountaims are very high, above 25_000 feet and are mostly

im chains or groups.

Rills are marrow crevices - tern to 300 miles long am_ less tham two

miles wide.
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Rays are narrc_ streaks, lighter in color than their surroundlngs,

radiating out fr_n prominent craters. They extend hundreds of miles

across the face of the moon.

Craters are by far the most n_rous lunar formations. They vary

in size from 150 miles in diameter to i/I0 mile in diameter.

Slopes on the Moon in excess of 49° are quite rare. There are no

great clefts or faults which are tremendously deep. The faults of the

Moon have slopes of about 45° .

The Moon's surface has not changed noticeably since observations of

it were first recorded. There is some speculation that this is not exactly

true. Some observers claim to have detected some chants but these have

not been verified.

SC7<
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Mars has a diameter of 4,200 miles. It's day is 2_ hours, 37 minutes -

about 37 minutes longer than ours. Mars is a mean distance of 1_2._ m_ll_on

m41es from the Sun and revolves about the Sun ance in 687 d_s. The closest

Mars comes to Earth is 35 million miles and its greatest distance at Ol_O-

sition is 61 million miles. The seasons on Mkrs are about twice as long

8_3 ours.

Mars and Earth are in opposition about every 2-1/8 Earth years.

Opposition is when Eazth, Mars, and Sun are in straight line. The closest

oppositions occur every 15 to 17 years. The last one was on September i0,

1956. The next opposition then will be on October 25, 1958, (approx.).

Indications are that Mars is a living planet. Faint atmospheric

belts have been detected across the face of the planet - and clouds

have been detected arou_i the northern ice cap in fall and wlnter. Some-

times atmosphere is clear and at other times opaque (called blue haze).

It changes rapidly for unknown reasons. Whatever atmosphere there is

contains very little oxygen. On_ heavier g_ses remain (nitrogen, C02,

argon, and H20). This is probably due to small mass of planet (mall

gravitation attraction). _e atmospheric pressure is not known but it

is estimated to be about i/lO that of Earth at the surface of Mars.

Other estimates place the pressure at 1.16 ib/in. 2. Atmospheric circu-

lation on Mars is similar to that on Earth. However, weather is more

regular due to Keography of its surface.

The temperature at the equator during the d_y is about 70° to 80 ° F.

and at night about -95 ° F. At poles it is far below zero both d8_ and night.

SO@<
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These temperatures were measured with a vacuum thermocouple which can

measure the heat of a candle _0 miles or more _V-

Radiometric measurements perndt estimation of surface temperatures

over areas as small as 200 miles in radius. This allows delineation of

the @eneral temperature field. Such a description is presented in the

following sketch.
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Streamline nml_ can be drawn cc_sistant with the temperature distri-

butions. Such a chart is shown below.
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A schematic stresmline map for Mers in Norther Hemisphere
winter. The arrows represent observed cloud drift directions.

Cloud drift observations made in 1894.

The most striking aspect of these two sketches is their resemblance

to terrestrial weather maps. This indicates as was mentioned earlier that

Mars has an atmospheric circulatian very similar to Earth's.

The poles of Mars are covered by ice caps but these caps are probably

only a few inches to a couple of feet thick.

The famous "canals" on Mars are real. They seem to be the lines that

the water from the melting polar ice caps follow. Vegetation grows along

these canals in sunder. Some people believe they are artificial since

they are so straight and intersect - one runs 1500 miles. Sc_e believe

they may be fault lines. These fault lines have been caused by collision

with meteorites or asteroids. Others seem to think that they may be

wind rows of volcanic dust blown into patterns that we see and that they

are clearer in spring because the winds increase. The only sure thing
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is that there is some sort of network of so-called canals that appear to

lead the water from the melting polar caps to the equator.

M_rs has two ti_ satellites. They are probably less than 20 miles

in diameter. They revolve in circular orbits in the plane of the planet's

equator. _ne nearer, Phobos, is only _,800 males from the center of the

planet. It revolves in the direction of the planet's rotation and its

rerlod is 7h 40m.

The other satellite, Deimos, revolves at a distance of 14,600 miles

from the center of the planet and its period is 30h 18m.

• • v ...
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The Asteroids

First discovered by Piazzl in 1801 (based on Bode's law). Between

Mars and Jupiter there are ma_7 asteroids or minor planets; 1_00 have been

cataloged and it has been estimated that there are as many as 30,000.

Of the first 900 cataloged, the main bo_7 begins at a distance of

2.1 astronomical units and continues to 3.5; then there is a gap and a

group of 6 at 3.9 units (Hilda group); then an isolated one, Thule, at

4.5 units; and finally, the Trojan group (6) at 5.2 units.

The eccentricities vary: 209 have eccentricity of O to 0.087; 375

from 0.C_7 to 0.174; 2_ fr_n 0.174 to 0.299; _9 from 0.259 to 0.3_2; 7

from 0.342 to 0.423 and 4 stragglers, Albert, Alinda_ _de, and Hidalyo

that have eccentricity greater than 0.90.

The inclination of their orbits to the ecliptic also varies - 222 being

inclined 0° to 50; 29"( from 5° to I0°; 222 from i0° to 15°; 98 from 15° to

200; 35 from 20° to 250; lh from 29° to 30° adn 3 above 30°.

There is a tendency for high eccentricity and inclination to go

together. The diameters also vary - there are 195 that have diameters

greater than 61 miles; 502 between 61 miles and 25 miles; 193 between 25

miles and i0 miles and 22 less than i0 miles.

Some of the bigger ones are

Name Dia. (miles) Al_lo

Ceres _88 .06

Pa11 .07

Vesta 248 .26

Juno 118 .12

Inclination of

orbit to ecliptic

1OO 37'

43'
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Eros is another important minor planetoid. It is only 17 miles in

diameter. It has a period of revolution of 643 d_ys, an eccentricity of

0.222. It is important because it comes to within I_,000,000 miles of

Earth and i.13 astronomical units from the Sun. Its orbit is greatly

affected by the mass of the Earth and Sun. Observation of these pertur-

bations will aid in determlning the mass of the Earth and Sun. However,

it only comes nearest to the Earth about every 40 years. Its orbit is

greatly inclined to the Earth's orbit.

A recently discovered asteroid called Geog_'aphos is one of few

asteroids whose orbit is inside that of our Earth's. Its plane or

revolution is inclined 13° to ours. Its period of revolution about the

Sun is 17 months. The Earth and Geographos will be h million miles apart

durinK August 1969, the closest for this century.

S:[3<
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Jupiter

Jupiter is the largest planet and the second brightest. Its equatorial

diameter is 88,800 miles; its polar dimeter 82,0OO miles. One Jupiter

year equals 11.86 Earth years. One Jupiter d_y is about 9 hours and 55

minutes. Its rotational speed at equator is about 28,800 miles per hour.

The temperature at the top of the atmosphere is between -130 ° C. to -180 ° C.

Its bulk is equal to 1,300 Earths.

Rotational speed of Jupiter plus its gaseous atmosphere causes the

planet's "atmosphere" to appear to have an alternately dark s_ light

band Bike structure. This rapid rotation causes rapid heating and cooling

of the atmosphere which in turn probably causes wind and electrical storms

far surpassing arA7 on Earth. The dark bands are called belts and the light

bands are zones. The bands are blue and yellow in color.

Atmosphere probably consists of clouds of frozen ammonia floating in

a sea of methane_ also probably some hydrogen and helium. The atmosphere

is estimated to be lO00's of miles deep. Colors and sepctrums can be

reproduced by frozen-free radicals of ammonia and methane in the Laboratory.

Free radicals are made by exposing molecules to proper wave length of light

and proper temperature. They are stable at low temperatures (order of

-200 ° C. ). When heated they combine to form molecules and heat. Could be

a possible source of fuel. The circulation of Jupiter's atmosphere is

similar to that of Earth.

The years of greatest sun spot activity are the years of maxlmtlm

spottedness of Jupiter.

5:}.4<
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The great red spot of Jupiter is of unknown cca_sition. The opinion

is that it floats in the atmosphere and there is no doubt but that it

affects the atmospheric flow near it.

Jupiter has 12 satellites. The seven outer ones are subject to

enormous perturbations by the Sun. Their plane of orbit is highly inclined

to the plane of the equator. The inner five about coincides with Jupiter's

equatorial plane. Jupiter VIII, IX, XI, and XII revolve in the retrograde

direction• Jupiter V is sometimes called Amalthea.
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Saturn

Only known planet with rings around it.

with ice surrounded by a gaseous mantle of methane.

Its mean distance from Sun is 886,000,000 miles.

L_).46 Earth years. It rotates in 10 hours 14 minutes.

The planet is probably coated

One yea_ equals

Its equatorial

diameter is 75,000 miles. Its rotational speed differs at different

latitudes as in the case of Jupiter and the Sun. Its temperature is about

-i_0 ° C. Saturn is more flattened at the poles than Jupiter. Its polar

diameter is 67,000 miles compared to 75,000 miles for the equator. Its

surface (llke Jupiter) is marked by dusky belts with light intermediate

zo_le8,

The outstanding feature of Saturn is its rings. _ese rings are

translucent and are composed of ti_ hig_ reflective solid particles

or moonlets. _e rings are in the plane of the equator of Saturn and are

inclined about 27° to the ecliptic.

Rings of Saturn

Radius of outer limit of rlng system

Width of outer ring (called A)

Width of Cassini's division (1675)

widthofrl.g(B)

Width of Crepe ring (C)

Distance of inner edge of ring C to surface of Satura

Thickness of rings

Miles

86,300

ii, I00

2,200

18,000

11,000

6,000

less than i00

l_oba_y 20 to _.0
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Another feature of Saturn has been the periodic observation of a

white spot on its disk. This spot was observed in 1876, 1903, and 1933.

The spot has varied in size from about 1/5 the planet diameter to 2/3

the planet diameter. _he 1933 spot started with an East-West diameter

equal to 1/5 of the planets equatorial diameter. It grew to 2/3 of

the planets equatorial diameter and finally dissolved into a white

band 1/2 the planets equatorial diameter in size. A second spot emerged

from the center of the first o_e and merged into the previously existing

bright zone changing it in appearance. The rotational period of i0h 16m

decreased to I0h 13m. _]_ere also has been observed a semlregular

fluctuation in the reflectivity of Saturn. This fluctuation has a period

of i0 years for Saturn.

Saturn has nine satellites. The orbits of the five inner ones are

circular and lie in the plane of the planet's equator and rings. Titan

and Hyperion also revolve nearly in the plane of the rings but Japetus

is inclined about i0°. Phoebe revolves in the retrograde dlrecticn in

the plane of the orbit of Saturn. Hyperion has an orbital retrograde

motion of 18° 40' annually.
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Satellites of Saturn

Encela_us

Tethys

Dione

Rhea

Titan

Hyperion

Japetus

Phoebe

117,000

157,000

186,000

238,000

332,000

771,000

9_,000

2,225_ 000

8,000,000

crj 0

d. h

0 22.6

1 8.9

i 21.3

2 17.7

4 12.4

15 _.7

21 6.6

79 7.9

550 10.6

0

0

26

z6

26

26

26

26

26

16

174.7

42_.7

_.7

A_.7

44.7

4_.9

7.i

0

18.1

O.0190 600 +
w

.o001 8oot

.o0oo 1200 t

.o020 11o0 t

.0oo9 150o t

.o289 3o8o -+

._o_3 500 +.

.0284 2O00 t

.1659 2oo±

1789

rr89

16_

16_

1672

16_

1_8

1671

1898
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Uranus

Uranus was accidentally discovered by Herschel in ]7_1. Uranus

appears as a pale green oblate spheroid. It seems to have bands or belts

and streaks across its surface. It has a rotational period of about

10-2/3 hours. The equator is inclined 02 ° to plane of orbit. Its

rotation is retrograde. Its temperature is about -170 ° C.

Whereas the outer atmospheres of Jupiter and Saturn consist mainly

of hydrogen and helium t with methane the next most cce_o_ element; neon

and other inert gases with lower boiling points m_y be more abundant on

Uranus and Neptune.

A simi-regular long period fluctuation in the reflectlvity of

Uranus of O._ years has been observed.

Uranus has five satellites w_ich revolve in same plane as planet's

equator. Their motion is retrograde.

Ns/De

Ariel

Umbriel

Titania

Oberon

Miranda

Satellites of Uranus

Distance from

e_n_ter of

Uranus, miles

120,000

107,000

273,000

363,000

75,000

Period

sidereal

za z2.5h

8d l_._

13d ll._

z_ zo._

Diameter

_AJA_A_A_.I
r_les

_0

_00

i000

_0

5£0<
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Neptune

Diameter of Neptune (discovered in itS6) is about 20,000 miles. Its

period of rotation is about IG hours. It has a dense atmosphere. A semi-

regular fluctuation in the reflectivity of _.4 yrs. has been observed.

Predicted by Adams and Leverrier. Neptune has two sattelites which are

called Triton and Nereid. Tritons motion is retrograde.

Other characteristics of Triton are:

Diameter - 2,000 miles

Distance from center of Neptune - 222,000 miles

Sidereal period - 5 ds_ys, 21 hours

Inclination of orbit to ecliptic - 35°

Discovered in i_6

The characteristics of Nereid are-

Diameter - 200 miles

Distance from center of Neptune - 3,500,000 miles

Sidereal period - 559d Oh 0m

Pluto

There is nothing much known about Pluto. Its diameter and mass are

smaller than that of earth. It has a yellowish appearance. Predicted by

Prof. Lowell in 1915. He worked from 1905 to 1915. His prediction was

not very accurate, placing the planet in oae of two opposite regions of the

Zodiac. After Lowell's death in 1916, the planet was finally discovered

Ln 1930 by Tombaugh.

Some claim that the discrepancies of the orbits of Uranus and Neptune

cannot be caused by Pluto because of its small mass. Pluto, because of its

size, probably belongs in the class of smaller planets mr even asteroids.

SZI<
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Having disposed of the general discussion of the solar system and the

major elements therein, the remainin6 part of the notes is devoted to the

presentation of numerical data and definitions of terms.

The tables present the numerical data for the Sun s the planets, the

satellites of the planets and for Some of the asteroids. A particular

value presented in the tables is a compilation of values obtained from

many sources and therefore may not be exactly consistant with other values

in the tables, however, it is believed that the values presented are the

best that are available, at least to the knowledge of the author. Values

not included or marked with question marks are subject to question, either

because they cannot be measured accurately or because the various sources

presented widely different values.
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Symbols

semi-n_or axis

s emi-minor axis

distance between center of ellipse and foct

time in d_s (sometimes used as superscript)

eccentricity

time in hours (sometimes used as superscript)

inclination of orbit to the ecliptic

mean heliocentric longitude

mean anomaly of a planet at a specific epoch. (The same a_le

as @ used in previous lectures.)

time in minutes (sometimes used as superscript)

sidereal period

time in seconds (sometimes used as superscript)

time of perihelion passage

time in years

right ascension

declination

longitude of perihelion

mean daily motion

argument of the latitude of perihelion

longitude of ascending node

52S<
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Definition of Terms Used in Astronomical Literature

i. Sidereal da_ - The period of one rotation of the Earth relative to the

stars.

2. Sidereal month - The interval between two successive arrivals of the

moon at a given apparent place smong the stars.

3. Sidereal year - The interval between two successive arrivals of the

Sun at a 81yen apparent place among the stars.

Solar ds_v - The interval between two successive meridian passages of

Sun.

5- Synodic month - The time of a revolution of the Moon with respect to

the apparent place of the Sun - that is from conjunction to conjunction.

Nodical month - The time of the Moon's revolutien with respect to

either node.

7. Tropical year - The interval between successive arrivals of the Sun

at the Vernal equinox.

o. AnomAlistic year - The interval between two successive arrivals of

the Sun an_ Earth at the same true anomoly.

o ___._o_a!._ +_--_,,_- "_-.,,_hotu- an@le of the Vernal equinox or the right

ascension of the meridian.

Solar time - The hour angle of the Sun. It differs from sidereal

time by the right ascensic_ of the Sun.

Astronomlc latitude - The angle between the plane of the equator and

the direction of gravity at the location in question.

Geocentric latitude - The angle between the plane of the equator and

a straight line passing from the locatio_ in questien to the center

5.7. 4<



14-32

of the earth. It differs from astronomic latitude due to the

oblateness of the Earth.

13. Geographic latitude - The angle between the plane of the equator end

a normal to the standard spheroid. It differs from astranomic

latitude only by the effects of local deviations of the direction

of gravity.

14. Geocentric longitude - The arc of the ecliptic_ measured Eastward

from the Vernal equinox to the apparent positien of the Sun as seen

from the Earth.

15. Heliocentric longitude - Same definitic_ as Geocentric longitude except

that it is as seen from the Sun. It is I_0 ° opposite Geocentric

longitude.

16. Geocentric - As seen from or referred to the Earth.

17. Heliocentric - As seen from or referred to the Sun.

i0. Conjunction - A time at which either the bod_ is between the Sun end

the Earth (inferior conjunction) or when the Sun is between the body

and the Earth (superior conjunction).

19. Opposition - A time when the Earth is between the Sun and the bod_.

20. Synodic period - The time between two successive oppositions or

successive superior conjunctions.

21. Transits - An occurrence in which one planet passes directly between

another planet and the Sun_ thus appearing as a black dot _ the

photosphere of the Sun.

22. F_uinox - points of intersection of the apparent path of the Sun (the

ecliptic) and the Earth's equator.

_ 5 <
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23. Vernal equinox - The equinox where the Sun crosses fl-an South to North

of the equator. (Occurs in the spring.)

24. Line of apsides - A line of infinite length passing through the apes

(perihelion and aphelion) and through the loci of the elliptic orbit.

The major axis of the ellipse is a segment.

25. Solar parralax - The apparent semi-diameter of the Earth as Sun from

the Sun.

26. Nutation - A small oscillation of the Earth's poles of rotation due to

the regression of the Moon's nodes.

27. Aberration - The effect of the orbital motion of the Earth upon the

apparent direction of the light that comes to us from a star.

2_. Albedo - A measure of reflective power. The ratio of light reflected

to light received.

29. Dicrnal motion - The apparent revolution of all the heaven_v bodies a

around the Earth.

30. Mean Anomaly - The angle the radius vector sweeps through as the

planet revolves around the Sun measured from perihelion.

31. Hour annie - The arc of the celestial equator included between the

meridian and the star's hour circle. The meridian and hour circle

are defined later under Coordinate Systems Used in Astronomy.

.-



Elements of a Planet' s Orbit

There are seven terms which define co=plete_7 the orbit of a planet.

They are

i.

2.

3.

5.

6.

e

The lon6itu_e of the ascending node, _.

The inclination to the ecliptic, i.

The longitude of perihelion, , or the "the argument of the latitude

of perihellon", _.

The semi-major axis, a.

The eccentricity, ¢.

The mean helicentric longitude, L, or the mean anomaly M, of the

planet at a specified epoch; or the time of perihelion passage,

The sidereal period, P, or mean daily motion, _.

The explanation of these terms is best understood by the use of the

following figure.

R

JJ

TI

0

N|

_# )rbit of planet
//

a

A
c: K

Orb: of
%

n

L



II_-39

Plane _ represents the plane of the Earth's _rbit (or the ecliptic)

and ORBI the plane of the orbit of another planet. The line of intersection_

IQI' which passes through the sun is the line of nodes. _e planet _asses

from the South to the North side of the ecliptic at the point n s which

is the beginning of the asceDdi_ node.

The line S_r is dream from the center of the Sun toward the position

of the vernal equinox on the celestial sphere. The angle between S

and NN' measured toward the ascending node (Eastward) is the IcMgitude

of the ascending node _. The angle between the two planes is i,

the inclination. These two elements (_ and i) define the position

of the orbit plane.

The orientation of the orbit within its plane ma_ be described by the

angle _, measured in the plane of the orbit and in the direction of the

body's motion (eastward for planets but westward for many comets) between

SN and SP, P being the perihelion. For the principal planets, however,

it is customary to substitute for _, the longitude of perihelion _ which

is the sum of _ and ft.

The semi-major axis, a, or mean distance of the planet from the Sun,

defines the size of the orbit. It is usual_ expressed in astronomical

units, which is based on the semi-major axis of the Earth's orbit,

(92,900,000 miles or i_9,500,OO0 kilometers).

The eccentricity, _, defines the shape of the orbit. Xt is the

ratio of c over a, c being the distance of the loci or Sun from the

center of the orbit and a bei_ the semi-major axis.

S <



To determine the position of the planet at a_ time we must know

the position at a specific time (at Epoch) and the time of revolutio_

or the mean dail_ motica_; _; which is si=pl_ 360 ° divided by the number

of d_vs in P.

Elements of an Elliptic OrBit

A

F S

P2

D

F and S are Foci.

AP is the longest diameter and is called the major axis.

BD is the shortest diameter and is called the minor axis.

a denotes the semi-major axis.

b' denotes the semi-mlnor axis.

c denotes the distance from the center C to the foci F or S.

The eccentricity is ¢ and equals c and is never greater than i.
a

The smaller the eccentricity the more nearly circular the ellipse.

If S is the foci about which the planet is revolving then P is

called the perihelion and A Is called the e_helion. The line SE is

called the radius vector and the angle PSE is called the true anomaly.
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Dimensions of the Terrestrial Spheroid

(Fr_n Hayford' s Spheroid of 1909)

Equatorial radius a - 637_._ Km= 3963._ ml

Polar radius b = 63_6.909 Km = 3949.99 mi

Mean semidiameter, i/3 (2a + h) = 6.37123 x lO_ cm = 6371.23 km

= 39.5o._9 mi

Oblateness a-b/a = 1/297

IO latitude, _. (in statute miles) = 69.0569 - .3_ cos 2_ + .0007 cos 4_

i° longitude (_n statute miles) = 69.2316 cos _ - .0_ cos 3_ + .0001 cos

The distance of the sea horizon in miles is equal to the square root

of 3/2 of the observer's height in feet.

The dip of the horizon in minutes of arc is equal to the square root

of the observer's height in feet.

Astronomical Constants

Length of day:

Sidereal = 23h _=6m 4s.091 of mean solar time.

Mean solar = 2_h 3m 56s555 of sidereal time.

Length of year (in mean solar units), 1900 - Newcomb

Tropical- 365_.24219_79 = 365d 5h _m _5.s98

Sidereal = 36_.29656042 = 56_ 6h 9m 9.s_ = 3.15_ X 107 sec

Anomalistic = 36_b'.2.._:_.13k • = 365 d 6 h 13 m 53.a01

Length of month (in mean solar units) (according to Brown)

s_i_al- e_.53o_-29d 12h 4_m 2_.8

Sidereal = 27_.521661 = 27d 7h 43m llS5

.odi_az = 2_.2_2_ = 2_ 5h 5'_35._
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Obliquity of the ecliptic = 23° 27' 8"26 - 0'.'46t_(t - 1900)_

General precession = 50"2564 + "000222 (t - 1900)

N_comb

-%

Constant of nutation - 9'.'21
Aiopte_ for Zphemerls purposes

Constant of aberration = 20"47

Paris comference, 1911Solar parallax m _"80

Velocity of light = 299,776 km/sec - I_6,273 ml/sec (mrge 19_I)

Constant of gravitation, G - (6.670 f .005) x i0-8 C.G.S. units (Birge 1941)

Acceleration of gravity, g, (in meters) = 9._ - .0260 Cos 2_ - 2h/R g

(from Helment), in which h is the elevation above sea level in meters

and log R = 6.t_16.

Earth's weight = (5.975 .+ .00_) x 1027 grams = 6.59 x 1021 short tons

Sun's weight - 1.992 × 1035 gra_s

Sun's mean radius = 6.965 × I0I0 cm

One astronomical unit (A.U.) = 1.496_ × 108 _ = 9.3 × 107 mi

One light year - 6.322 × 104 A.U. - 9.260 × 1012 km = 5.t_ × 1012 mi

One parsec = 3.263 light years - 2.06265 x 105 A.U. = 3.087 x 1013 km

= 1.92 × lOIS ml

SiS<



Kepler's Laws of Planetary Motion

i. Each planet moves in an ellipse which has the Sun at one of its loci.

2. The radius vector of each planet passes over equal areas in equal

intervals of time (isv of areas).

3. The cubes of the mean distance of any two planets from the Sun are to

each other as the squares of their periodic times or a13:a_3:=:PI2:P2 2.

IMxle's Yaw

The approximate mean distance of the planets from the Sun may be

convlently reme_red by a relation first pointed out by Titus but now

commonly known as Bode's law. If we write a series of _'s and add to them

the number O; 3 × I = 3; 3 × 2 = 6; 6 × 2 = 12; 12 × 2 = 2_; etc. thus

4 4 4 4 4

_ercury Venus Earth Mars Asteroids Jupiter Saturn Uranus Neptune

we get a series of numbers that are approximately ten times the mean

distances of the planets in astronomical units. There is no known reason

. .'L.__ .X. 't.../ ............... 1---
W,LL_ t_AJ.L_ _I,J[A_::UV'_.A" WUJ.'I"_3e

Units

Astronomical units are usually used in talking about distances in

the solar system. For distances greater than those of our solar system

the astronomical unit is too small since it is based on the semidiameter

of the earth' s orbit.

544<
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The English have invented a new unit called a parsec. The parsec

is based cm the distance a star is from the Earth that has a paralla_ of

i". The distance of a star whose parallax is P seconds is then simply

I/P parsecs.

One light yr.

One parsec

Distance of

proxi,na

Approximate Ecuivalents

Centi-
Light yrs. Parsecs Ast. units Millions of mi. meters

1.00

3.°_6

*.20

0.32

1.00

1.28

65,000

206,265

26_,_00

6

2O

2_

i0I_

3.lOl_

.i0I_

Prcxima is the nearest star to us.

Coordinates System Used in Astronom_

In astroncmy the sky is considered a celestial sphere with the earth

at the center. The apparent position of the stars is described by locating

its projection upon the celestial sphere. There are four coordinate systems

used to locate the objects on the celestial sphere and they all have common

elements.

I. Fundamental circle - great circle of the sphere. Poles are

located 90 ° to this circle.

2. Secondary great circle - these circles pass through poles

(ecrrespond to circles of longitude on Earth).

3. Parallels - smaller circles parallel to fundamental circles.

The four systems are es follows:

S S<



Horizon System

1. Fundamental circle - it is the horizon. The poles are called the zenith

(overhead) and Nadir. Their position is defined by the direction of

gravity.

2. _condary circles - they are called Vertical circles. The vertical

circle going through north and south is called the meridian and the

one going through east and west is called the pr_ne vertical.

_. Parallels - Almucanters. Coordinates of a star are azimuth and

altitude. Azimuth is the arc of the horizon measured in the clockwise

direction from the south point to point of the star's vertical circle.

It is expressed in degrees (0 ° to 560 °). Altitude of a star is the

arc of a vertical circle included between the star and the horizon in

degrees. The complementary angle of the altitude is the zenith distance.

Equator System

i. Fundamenta] circle - it is called the celestial equator. Poles are

points in the sky which have no diurnal motion. These are points

where the earth's axis intersect the celestial sphere.

2. Secondary circle - hour circle.

3. Pp_ral!els - Parallels of declination.

The declination of a star is the arc of an hour circle included

between the star and the celestial equator. Reckoned in degrees, + if

above equetor. Symbol is 5.

The hour angle is the arc of the celestial equator included between the

meridian and the star's hour circle. It is usually measured westward and

is expre,qsed in hours. It is measured from the observer's meridian.

$16<



Right ascension of a star is the arc of the celestial equator included

between the vernal equinox and the star's hour circle. Xt is reckoned

eastwsrd from vernal equinox and is expresse_ in hours. Its symbol is =.

One complete revolution of the celestial sphere is called a sidereal

ds_7. It is about h minutes shorter than solar day. Sidereal noon occurs

when the vernal equinox is on the meridian. Sidereal time at any moment

is the hour angle of the vernal equinox or right ascention of the meridian.

_]quinoctial colure

Sidereal

time

8

_o_ _

P

Eastward

_auator

Star hour angle = sidereal time - right ascension

Ecliptic System

i. Fundamental circle - path of sun among the stars is called the ecliptic.

Angle at which it intersects equator (23_-i/2) is the obliquity and

the points of intersection of the equinox. 90° to the equinox is the

solstice. Hour circle that passes throu6h the equinoxes and soltices

ere known as the equinoctical and solstitial colures.

2. Secondary circles - they are called secondaries to the ecliptic. They

are great circles passing through the north and south poles.

3. Parallels - they are called parallels to latitude. They are smaller

circles parallel to the ecliptic.
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Celestial longitude of a star is the arc of the ecliptic measured

eastward from the vernal equinox to the secondsry circle that passes through

the star. Celestial latitude is the arc of the secondary between the

star and the ecliptic. It is ÷ if the star lies north of the ecliptic.

Galactic System

I. Fundamental circle - Galactic circle. It is the centerline of the

milky way. It is inclined 62° to celestial equator. North pole

is at right ascension 12h _m and declination + 27°.

2. Secondary circles - secondaries to galactic circle. Same as secondaries

to the ecliptic.

3. Parallels - parallels of galactic latitude. Same as parallels of latitude

in the ecliptic system.

Galactic longitude is reckoned from the intersection of the galactic

circle with the celestial equator at = = 18h _hm. Galactic latitude and

longitude are related to the galactic circle exactly as celestial latitude

and longitude are related to the ecliptic.

General Remarks on Coordinate Systems

The horizon system moves with the observer. The equator system is

based on the earth's rotation about its axis. It is the same for everybody

on earth. The ecliptic system is based on earth's revolution around the

sun (earth's orbit). This system is also _ne same for everybo_7 on earth.

The galactic system is based on structure of visable universe of stars.

It would hold for all planets of our solar system and nearby neighboring

stars.
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FJJ.-_I_I'S ATHOSI_ERE

W. J. O'Sullivan_ Jr. and J. L. Mitchell

Up until about 1_6 the atn_phere had been explored in detail -

pressure_ temperature, density, and composition - at altitude up to

a maxim_ of about 1_0,000 feet by means of sotw_tng balloon_ i.e. I

radiosonde techniques. On the basis of an average of these measure-

ments the International Civil Aviation Organization_ ICAO, agreed to

the adoption of a standard atmosphere for altitudes to 65s800 feet.

This ICAO standard atmosphere is published as NACA TR 1235_ reference 1.

After about 1_6, the sounding rocket came into use as a powerful

research tool far upper atmospheric research. The initial sounding

rocket research was conducted under the guidance of a panel of upper

atmospheric scientists offlciall_r designated as the V-2 panel. The

V-2 panel later changed its name to Upper Atmosphere Rocket Research

Panel and is now called the Rocket and Satellite Panel. Under this

panel (whatever its name) was coordinated the upper atmospheric

research dane prior to the International Geophysical Tear, using the

V-2 and later the Aerohee, .Viking and Nlke-Deacon or Cajun soundin8

rockets. These sounding rockets have extended the direct measurements

of the atmosphere up to a maximum height of about 700,000 feet. As a

result, up to about 400_000 feet we now know a great deal about the

detailed pressure, temperature, densltyt and composition of the air.

SSi<



14-52

The results of these direct sounding rocket data available up to about

1955, along with indirect meteor and aurora data and deducticus from

theory, were used to compile a model atmosphere up to 118_0,870 feet.

This atmosphere was published by the Air Force Cambridge Research

Center as "The ARDC Model Atmosphere 19_6", reference 2.

At the present time, F_y 1958, first results from Sputnik I and

Explorer I satellites have given values of atmospheric density

considerably higher than the "ARDC Atmosphere" at altitudes of about

720,000 feet and 1,200,000 feet, respectively. On the basis of these

measurements, Sterne, Folkert, and Schilling of the Smithsc_ian

Institution Astrophysical Observatory, reference 3, have suggested

a revision of the "ARDC Atmosphere". Figure i shows the two satellite

points, the "ARDC Atmospher" and the proposed revision. Explanations

for some of the changes in the various curves are given on the figure.

Since the concept of geopotential altitude is of interest_ an

explanation regarding the relationship of _eopotential and geometric

altitude is in order. A detailed discussion will be found in the ARDC

Model Atmosphere Report. The basic definition of @eopotential is as

follows: The geopotential of a point is defined as the increase in

potential energy per unit mass lifted fran mean sea level to that

point against the force of gravity.

Now the increase in potential energy per mxlt mass of a bod_

lifted against the force of gravity, from sea level, throt_h a vertical

distance to a given point is:
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_- = gdz -. O.P.

AE = increase in potential energy, ft-lb

m = mass of body in slugs

g - acceleration of gravity at point z f/sec 2

z = geometric altitude above mean sea level_ ft

G.P. - geopotentlal in ft-lb/slugs

(z)

Now if we define a geol_tential altitude

through which the mass must be raised at a constant standard value of

acceleration of gravity, i.e., G to get the same change in potential

energM:

H to be that value of altitude

then

o.P. - m_ (2)

_o Z
s - - _z (3)

further using the inverse square law for the variation of g with z, i.e.,

g<p= sea level value of g at latitude of

r_ = radius of the Earth at latitude _ ft

H=G/° r?,r_ + dz

of the point, f/s 2

(_)

(9)
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integrating gives

or

(6)

Z 8
r_ H

g-_ r_-w
G

(7)

The definition of G is such that at latitude 45 ° 32' 40", _/G = i.

At this latitude r = 20,855,531 feet, so

H

Zi+

20,85.5,531

(8)

The significance and usefulness of the geopotential altitude is

that the average atmospheric properties on a nonspheroidal Earth are

invariant with geopotential altitude rather than geometric altitude.

The equation of hydrostatic equilibrium for instance is

dp= - ogdz (9)

where g depends on latitude and altitude by equation (_).

Differentiating equation (3) we get

GdH= gdz (zo)

so that independent of latitude

dp=-GodH (n)

Equation (Ii) along with the perfect gas is_, the molecular weight of

the ari, a specified variation of temperature with height (usually

554<
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geopotential height), and a sea level value of pressure have been used

to calculate the standard atmospheres in the reports referred to

previously.

A brief history of standard atmospheres and detailed anal_sis of

the theory and calculation procedures are given in reference 2. A summry

of radiosonde temperature measurements is given in reference 4. Reference

5 presents a summary of sounding rocket measurements to January 19_.

Sounding rocket techniques are discussed in reference 6. Reference 7

is an extensive study of the atmosphere and contains a wealth of basic

references foa" further stud_.
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S_L_ION XV

Communications and Tracking

For many years to come, the major purpose of each

vehicle sent into space will be to gather information both for

application to the design of future vehicles and for the further-

smce of general scientific knowledge. A system of communicating

this information to earth, as soon as possible after it Is collect-

ed, is an essential part of any foreseeable space vehicle.

The ability to track a space vehicle is essential also,

for the position and velocity of the vehicle are required for

guidance and for observing possible disturbances in flight path.

Since electromagnetic waves form the only known practical

medium for communication through space, it will be well to con-

sider some of the factors which influence the transmission and

reception of these waves and the relative merits of some methods

of impressing information signals upon them. For the present,

visible wavelengths will not be considered.

The first consideration in designing a transmitter will

be choosing the frequency of the carrier wave. Several factors

enter here. The earth's atmosphere, particularly the leyer called

the ionosphere, attenuates, refracts or reflects radio waves de-

pending on the frequency of the radio waves and the angle of

incidence. Commercial, military and amateur radio transmissions

pretty well cover the practical wavelengths, to say nothing of

interference from radio stars. As a kind of optimum, U. S.

satellite designers have chosen 108 megacycles per second.This

frequency occurs at the upper edge of the commercial F.M. band,
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and most home F.M. sets can be modified easily to receive

the stronger U.S. satellite signals.

Another matter for consideration is the manner in

which the radio carrier wave is to be modulated by the information

to be transmitted. The two most common methods are frequency

modulation, where the carrier frequency is changed in proportion

to the information signal, and amplitude modulation, whereby the

strength of the carrier wave is made proportional to the ir_or-

mation signal while its frequency is held constant. Of these

two methods, the A.M. has the advantage that avcry selective

receiver may be used, since the major frequency content of the

transmitted signal is at the carrier frequency. High receiver

selectivity is very desirable for eliminating noise interference.

It is not difficult to see that the fewer the noise frequencies

allowed in to be amplified along with the useful signal, the

more the signal will stand out. Everyone has had experience

with the interference of one commercial radio broadcast with

another at some near frequency. A complete lack of selectivity

would allow all the stations up and down the dial to be received

at the same time.

A.M. is not suited for data transmission if it is used in

the usual manner, that is, where the amplitude of the carrier

varies directly with the information signal. Too many things,

besides the information signal, can influence the received

amplitude, as you well know. The solution is to modulate the

carrier amplitude with another carrier frequency, which may be

! " 560<
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in the audible range (up to about 15 Kcps.). The frequency of

this subcarrier is then varied according to the magnitude of

the measured quantity to be transmitted. The actual amplitude

of the received signal now has no significance whatever with

regard to the information content. In this manner the best

characteristics of both F.M. and A.M. are combined.

The power required of the space vehicle's transmitter

will depend on the sensitivity of available earth-based receiving

equipment, distance, atmospheric attenuation and noise levels.

Receivers have been designed which are sensitive to 10 "18 watts

power input. With this sensitivity, however, information could

only be sent at the slow rate of one "bit" per second. The

major stumbling block to increasing sensitivity appears to be

the noise generated in the receiver circuitry. If you turn up

the volume on a high gain radio receiver, you may hear the effects

of r_dom motions of electrons in the vacuum tubes and even in

the wires and other components of the set, These noises ar_ in

large part due to thermal agitation of molecules and atoms.

Some reduction in receiver noise level can be gained by cooling

parts of the receiver to very low temperatures.

Noise which originates outside the receiver can be re-

duced by the same methods used by owners of TV sets, though much

refined. Maximum receiver selectivity restricts the noise to a

narrow range of frequencies, while highly directional antennas

will pick up only the noise which comes from the same direction

i," I-% _



as the signal. The TV set owner increases selectivity by

installing high pass, low pass or band-pass filters in the

antenna system, whereas high selectivity (usually variable)

is built into communications receivers. Directional TV

antennas with remote controlled rotators are not uncommon.

Many steerable parabolic reflectors of large diameter, 80 to

250 ft., have been built for use in radio astronomy and have

been brought into play for tracking and receiving telemetered

data from the U.S. and Russian satellites.

The reason for all the concern over receiver sensitivity,

antenna gain and so on is that transmitter power is expensive

when it must be carried on a satellite or other space vehicle.

At the present state of the craft, batteries "cost" about 2.5

pounds per watt-hr. The extra rocket fuel required to get one

more watt-hr, into space is tremendous. For this reason, U.S.

satellite transmitters have all been less than .i watt. (The

Russians used a 1 watt transmitter.) WVEC-AH pours out 250

watts, WGH-AM uses 5,000, Just for comparison.

In order to guide a vehicle properly during the launching

phase, some accurate system of tracking is required. This

system will later be used to observe the trajectory of the

vehicle. Any deviation (or for that matter, lack of deviation)

from the predicted path is of great interest.

Tracking systems are of two main types, the radar system

which uses power transmitted from the ground and reflected back

from the vehicle, and the directional receiver system which uses
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the power tramsmitted from the vehicle. Most of us are familiar

with the principles of radar. The most accurate of the other

systems is known as the radio interferometer. Basically, it

consists of two antennas located some distance apart and feeding

into a common receiver. A signal source moving across the field

of this antenna system will produce signals in the two antennas

which alternately cancel and reinforce. As usual, between the

basic system and something workable, there is a wide discrepancy.

With the aid of a few blocks, I will try to explain some of the

details of an actual system built by a group of radio amateurs

out in California. This system is a simplified version of the

Microlock tracking and communications system developed by the

Jet Propulsion Laboratory of the California Institute of

Technology. Most of the quite complicated circuitry shown in

figure I is used to correct for frequency shifts in the incoming

sign_l due to Doppler effect. For this purpose, a single ref-

erence is used. This _f_n_ _nt_o _o o_ ...... ; _^ I_..................... _._v _o_* _ u_- _'_:_iv

the telemetered information. Beginning with the reference antenna,

the signal from the satellite is picked up and sent to a pre-

amplifier, (I). The output of the preamp., still at the satellite

frequency of 108 mc., is fed into a mixer, (2), where it is mixed

with (added to) a 127 mc. signal from a voltage controlled

oscillator, block 6 . The output from the mixer consists of

the sum and difference of the 108 and 127 mc. signals. Block 3

is an ordinary communications type receiver tuned to receive only

the difference frequency, 19 mc. This receiver has its own local
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oscillator which is tuned to 19.455 mc., producing an output

of 455 KC. (19._55-19) when mixed with the 19 mc. input. Now,

if there is a shift in input frequency due to motion of the

satellite, the input to receiver (3) will no longer be 19 mc.,

but some other frequency. The output will also no longer be 455

KC. One method of keeping the output of receiver (3) at a

constant 455 KC is to vary the frequency of the oscillator, (6),

the required amount to keep a constant 19 mc. difference from

the satellite signal. This can be done automatically as follows.

The output of receiver (3) is compared with the output of a

crystal controlled 455 KC. reference oscillator,(7), by the phase

detector in block (h)- This phase detector is a device which pro-

duces a voltage proportional to either the sine of the phase

angle or the frequency difference between two inputs. The in-

stant the output of receiver (3) begins to differ from the 455

KC. reference oscillator, either in frequency or phase, a correct-

ing voltage from the phase detector is sent through the filter

(5) to the voltage controlled oscillator (6) which changes fre-

quency in such a manner as to bring the output of receiver(3)

back to exactly 455 KC. The filter (5) limits the response of

the correcting system so that no change in frequency faster than

lO cycles per second will be corrected. Thus any telemetered

data in the form of frequency modulation faster than lO cps will

not be destroyed. Without filter (5), the system could not dis-

tinguish between the relatively slow changes in frequency due to

5 4<
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Doppler affect and the rapid changes in frequency due to F.M.,

and would cancel out both types of frequency change.

T_e output of receiver (3) is also fed to a telemeter

detector and recorder.

Thus far, the only accomplishment has been the establish-

ment of a constant h55 KC. output frequency and the recording of

the telemeter data. The interferometer channel is also control-

led by oscillator (6) . A separate receiver is used, block ll ,

and the local oscillator (19._55 mc.) of this receiver must be

synchronized with that of receiver (3) to avoid undoing the work

of the frequency correction network. (The local oscillator in

receiver _3) may drift, but such changes in frequency would be

corrected as if they were changes in satellite frequency. Re-

ceiver (11) is not in the feedback loop of the correction system,

and drifting of its oscillator would not be corrected. Therefore,

receivers (ll) and (3)must, effectively, use the same local

oscillator. This is indicated by the dashed line Joining (3) and

(ll) .) Signals from the satellite reach the receiver _ll) through

mixers (9) and (10). Since the antennas E and W (East and West)

are separated by some distance, the two signals fed Into(9) will

differ in phase according to the relative positions of the satel-

lite and the two antennas. The output of C9) can thus be con-

sidered a phase modulated signal of 108 mc. frequency. This is

reduced to 19 inc. in mixer lO and again to _55 KC. in receiver

(ll), retaining the phase modulation. Phase detector (12) detects

the difference in phase between the satellite signal and the

$6S<
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_55 KC. reference oscillator, converts it into signal strength

variations which are recorded on an ink-recorder,(13_. The

resultant record looks like this, as a satellite crosses the

antenna field.

T_ me

By proper interpretation of the recorded time history,

the angular position of the satellite with respect to the antenna

base line at any time can be determined very accurately.

Time correlation of all satellite signals is very

important, so that records from several interferometer stations

can be used to predict the path of the vehicle. Radio station

WWV, operated by the Bureau of Standards on several frequencies,

brcadcasts extremely accurate time signals which can easily be

used for the necessary correlation.

The frequency shift due to Doppler effect, which was so

carefully avoided in measuring angular position and receiving

telemetered data, is used in other apparatus to measure the range

rate (radial velocity) of the space vehicle. The stability of the

satellite transmitter is sufficient to allow accurate measurements

of this sort. For a satellite coming toward or going away from

an observed at 18,000 mph., the Doppler shift is about +- 2 KC.

from 108 mc. The most sophisticated circuitry may detect a shift

S 6<
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of a fraction of a cycle per second. The actual range of the

vehicle may be obtained from one station by radar or from two

or more correlated stations by triangulation using interfero-

meter data. As the range increases to interplanetary distances,

neither of these methods will be sufficient. A solution might

be to establish a base on the Moon for triangulation purposes,

with the other base on earth.

A recent discovery by Dr. John D. Kraus of Ohio State

U., resulting from some efforts to receive the radio signals

from Sputnik I, may be of aid in detecting ICBM'B approximately

one minute earlier than can be accomplished by ordinary radar

methods. The discovery came about in this manner: it was

noticed at a receiving station in central Ohio, that the 20 mc.

signal from Sputnik I was not received clearly until the satel-

lite had passed over. Furthermore, the 20 mc. signal from

station WWV, which is not normally heard at night in central

Ohio, was received in thi_ A_ _ _° +_ "_^_*_- pas_ed

over, and reception began before the satellite itself came up

over the radio horizon. The indications were that a cloud of

ionized particles was being pushed ahead of the satellite. This

cloud reflected the satellite transmitter's signal away from the

receiving station while it reflected the WWV signal toward the

receiver. The short wavelength signals from radar equipment pass

through such a cloud, and thus cannot detect it.
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Since an ICBM would be travelling through the ionosphere

at approximately satellite speeds, it is expected that a low

frequency radar-type installation could be used to detect the

concentration of ionized particles ahead of the missile. This

cloud, according to calculations, can be as much as 300 to _00

miles in length, giving an extra minute of warning. When it

is considered that radar would only give at most nine minutes

warning, the extra minute can be seen to be very important.

This phenomenon had been observed earlier as meteors

entered the ionosphere, but at that time it was attributed to

the meteor trail.

Now, let us examine the data telemetering system of a

U.S. satellite. The quantity to be measured acts on a trans-

ducing element to vary one of its electrical properties. For

instance, changes in temperature might act on a device called a

thermistor to vary its electrical resistance. Micrometeorltes

might erode away parts of a thin metal film, increasing the edge-

to-edge resistance of the film. These are techniques with which

most of us are familiar. In the Vanguard satellite which didn't

quite make it on April 28, 12 quantities were to have been measur-

ed. To transmit all this data at once would require a large

bandwidth of transmitted frequencies. Since most of the quantities

are only slowly changing, a pulse type of transmission was to have

been used. In this system, each pulse consists of a sine wave

superposed on the 108 mc. carrier frequency by carrier amplitude

modulation. The frequency of the impressed sine wave is proportion-

al to one of the measured quantities, the duration of the pulse
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(up to about 30 milliseconds) is proportional to a second

quantity, and the interval between the first pulse and the

second represents a third quantity. The frequency of the

second pulse can represent a fourth quantity, and so on until

each of the measured quantities has been transmitted as a

frequency, pulse duration or interval together with any desired

calibration pulses (similar in principle to the calibrate de-

flections and galvanometer zeros used on oscillograph records).

At the end of each sequence of pulses, or frame, as it is called,

a pulse or interval of recognizable duration will appear as a

marker, and another cycle of pulses begins. At the earth station,

these pulses can be recorded on magnetic tape together with a

time signal from WWV. The transmission rate is about 3 to 4

frames per second.

Probably the most complicated piece of equipment in the

satellite is the encoder, whlcn determines whether each quantity

is to be represented by a pulse frequency, pulse duration or

interval between pulses, and the sequency in which the data is

to be transmitted. It also must determine the frequency and

duration of each pulse, and the duration of each interval be-

tween pulses in accordance with pre-set calibrations. This re-

markable gadget is contained in a disc 3/5" tIL%ck, 5-1/2" in

diam. weighing 3-1/2 oz. and consuming 8 to i0 milllwatts of

power. There are no moving parts.
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Transistor a_nplifiers are used in place of vaccuum

tubes in the U.S. satellites.

Signals can only be received from the satellite when it

is in the line of sight. In view of this fact, some advantage

is to be gained by storing the recorded data for readout only

once each orbit as the satellite passes near one of tile receiving

t_is

stations. A tape recorder has been incorporated for^purpose in

one of the'_Explorers"whlch is now in orbit. The data are record-

ed at a rather slow tape speed. On receiving a code signal from

one of the earth stations, the tape is played back at high speed

and the data transmitted to earth. At the same time, the tape

is erased for use on the next orbit.

The power requirements for satellite transmitters are

very small. 100 milllwatts can give a very good signal from

a distance of several thousand miles. The power required varies

directly wlth the square of the distance to be covered. If

l0 row., for instance, are the minimum requirement for a distance

of 2.500 miles, then 100. watts would give the same signal at the

distance of the moon, 2%0,000 miles. However, present satellites

are radiating power in all directions. If some method can be

found for orienting an antenna in the direction of the earth at

all times, the radio power can be concentrated into a small cone.

A cone of about 2 ° apex angle would permit the l0 milllwatt trans-

mitter to cover the distance between the Earth and Moon. However,

even with the reflecting antenna, the power required still In-

creases with the square of the distance. When the vehicle reaches
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25,000,000 miles (not quite out to the nearest point on the

orbit of Mars) the power required is again lO0 watts with the

2_ beam. The extent to which the beam may be narrowed depends

upon the wave length of the radio waves and the diameter of the

reflector. Out in interplanetary space, a very large reflector

could be carried because its strength requirements would be

small. For instance, one of the large plastic balloons could

be used as a reflector by aluminizing only half of it. Such

antennas have actually been used pn earth in radar installations,

where they could be shielded from wind forces.

If trips to the outer edges of the solar system are to

be successful, it will probably be necessary to establish some

method of relaying messages between the earth and space vehicles.

It may be possible to establish automatic repeater stations on

each planet visited, gradually working outward. These stations

might be atomic powered, or they might be powered by natural

movements of the planet's atmosphere or ground fluids. In

addition to furnishing a relay station for messages, each would

furnish a beacon, identified by some code, for navigational

purposes.

Another fact which may have to be taken into account is

that there will be no "urgent" messages as we know them. The

radio operator in the neighborhood of Pluto who says, "Rush this

message through to Earth" must reconcile himself to the fact that

he will have to wait at least l0 hours for a reply. The velocity

of propagation of electromagnetic waves is one thing we haven' t

been able to speed up yet.
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Many phases of communications theory and practice could

not be touched upon in this presentation. It is hoped that

these objectives have been obtained: to show how, in a general

way, it is possible to get back enough information to Justify a

space vehicle; to show how the path of this vehicle may be

followed from the ground, and to state some of the obstacles

to communications over very long distances.
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SECTION XVI

SOME DYNAMICAL ASPECTS OF THE SPECIAL

AND GENERAL THEORIES OF RELATIVITY

Special Theory of Relativity

Evolution of Special Theory of Relativity

Towards the close of the last century Michelson and

Morley performed an experiment. At the outset it appeared

Just another routine experiment. No one expected it to

turn out, as indeed it did, to be one of the most signifi-

cant experiments in the whole of scientific history. The

experiment had as its objective the determination of the

velocity of the earth' s drift through the all prevading

ether. At that time it was generally supposed that light

and electromagnetic phenomena in general were propagated

through the ether with constant velocity. If a light Wave

were to meet the earth head on as the earth drifted through

the ether, the velocity of the light relative to the earth

would be somewhat augmented. On the other hand, if the light

signal were to overtake the earth the velocity would be

correspondingly reduced. The apparatus (figure 16-1) con-

slated in principle of a light source S located at the

intersection of two mutually perpendicular arms SP and SQ,

both of equal length, at the extremities of which were mounted

two mlrrors.
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Mirrors

(Light source) S

Figure 16-1

By comparing the times taken for a light pulse

initiated at S to traverse the respective arms and back

again the velocity of the earth's drift could be calculated.

The apparatus was sufficiently sensitive to detect a velocity

of drift of 1 mile per sec. As is so frequently the case,

it was the unexpected that happened; they got a null result.

Of course, there was a possibility that the earth was drift-

ing in a direction bisecting the angle PSQ. This was elim-

inated by rotating their apparatus through _5 ° and repeating

the experiment and again getting a null result. There re-

mained a further possibility, an unlikely one albeit, that

the velocity of the earth relstive to the ether was zero,

(or at any rate less than 1 mile per sec). This possibility

was eliminated when they repeated their experiment after an

elapse of six months (the earth's velocity having in the

meantime changed by about 38 miles per sec.) and again

obtained a null result.

Something was clearly wrong with the current concept of

propagation of light through space. Nor would it have helped

to revert to the corpuscular theory for this demanded that

the velocity of light be dependant on the velocity of the

SVS<
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emitting source - a result known to be at variance with

experimental results. Einstein was the first to overcome

this impasse, only, however, by abandoning the intuitive

concept of space and time.

16.12 Kinemetics of Special Theory of Relativity

Einstein took the experimental result at its face

value viz the velocity of light is constant relative to all
/

observers. Consider two observers 0 and O' figure 16-2

z°I

I

I

I /Y'
/

I /
I /

X I/ X'

O'

)V (Velocity of 0' Relative to 0)

Figure 16-2

and let us suppose a light pulse is initiated at

I) and let it be subsequently received at B

Let observer 0

coordinates :

assign

x y z t

x+dx y+dy z+dz t+dt

A (event

(event II).

(event I)

(event II)

Similarly let observer 0'

assign coordinates:

x' y'

x' +dx' y' +dy'

z' t' (event I)

z'+dz' t'+dt' (event II)

576<
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SinSe by hypothesis the velocity of light is the

same for both observers (say equal to c)

•then 0 = dx 2 + dy 2 +

and 0 = dx'2 + dy'2 +

dz 2 . c 2

dz' 2 . c2

dt 2

dt' 2

i.eo t

dx2 + dy2 + dz 2 - c2dt 2 = dx '2 ÷ dy '2 + dz'2
2

- c dt '2

(16.12-i)

This differential relationship is assumed to hold for all

contiguous pairs of events. Clearly it implies some form

of functional relationship between x' y' z' t' on the

one hand and x y z t on the other.

tegrated form of equation (16.12-1).

cussion let us disregard the y and

Let us seek the in-

To simplify the dis-

z coordinates.

dx 2 + (icdt) 2 = dx ,2 + (icdt,) 2

Compare this with

dx2 ÷ dy2 = dx ,2 + dy, 2

This latter defines simply a rotation of xy

some angle @ as depicted in figure 16-3.

(16.12-2)

axes through

Y

\

\
\

\
x's

s

. _,I X

Figure 16-3
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x' = x cos @ + y sin @

y' = -x sin @ + y cos @

Clearly then the integration of (16.12-2) leads to

x' = x cos @ + ict sin @

ict' = - x sin @ + ict cos @ (16.12-3)

or

Since

purely imaginary, say

cos (i

ct' = ix sin @ + ct cos @

(where @ is the constant of integration)

x, t and x',t' are all real this implies

i sin (i

i@

) = cosh a

) = sinh ¢

@ is

Thus the equationS (16.12-3) take the form

x' = x cosh _ - ct sinh G

ct' = - x sinh a + ct cosh a

c can be expressed in terms of V.

of O'(x w = O) relative to 0 is V.

0 = X cosh ¢
X

- ct sinh _; cc-r-"

V

C

Hence

1

V

C

(16.1a-_)

Thus since velocity

tanh u ,

Substituting in (16.12-4) we obtain finally

$7S<
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x-Vt

_ - c2

t, - C2
(16.12-5)

These are the Lorentz Transformations.

16.121 Dilatation of Time

This is most readily obtained from the differential

expression

_ c2 ds2 m dx 2 + dy2 + dz 2 _ c2dt 2

(ds defines the absolute interval between two events: - The

spacial and temporal separations of the events are simply

components which vary from observer to observer).

Let us suppose 0 observes a particle P in motion

and let us further suppose a clock is carried on P.

(Track of
P in x_t frame of O)

X

FigUre 16-4

Assume light blips are initiated at A and B.

$7S 
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events are designated I and II respectively.)

0 assigns coordinate differences dx dy dz

to the interval separating these two events.

clock carried by P

of separation ds.

dt

Howeverp the

Now

will actually mark off the true interval

2 = dx2 dy2- c ds2 + + dz2- c2dt 2

Time between blips as

registered by moving clock

Time between blips as

registered by observers clock

i.e., clock in motion appears to be running slow by a

factor i_-_

(16.12-6)

16.122 Lorentz-Fitzgerald Contractiono

To obtain this we must appeal to the integrated forms

of the equationsZ -

I

I
I

I
I

I

(I)v

/
/

;(2)

/
/

Figure 16-5

Assume O' is carrying a measuring scale which extends

from his origin x I' = 0 to x 2' = i. O measures the

length of I by determining the coordinates of its

• tI

extremities at the same instant^_ccordlng to his own clock).

SSO<
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xI - VtI

x2 - VtI

x2 - xI

(16.122-1)

Thus the measuring rule in motion appears to be reduced in

length by a factor _I-_ (This is the
c2

so called Lorentz-Fitzgerald Contraction).

Thus in effect what Einstein has accomplished in his

special theory of relativity is the welding together of

space and time. We are not saying that time is of the same

intrinsic nature as space. Quite the contrary. The mathematican

recognizes the difference by attaching the identifying label

i to the time coordinate. The physicist recognizes the

distinction by using clocks to measure time like separations

and measuring rules to measure space like separations. We

ourselves intuitively recognize a difference between them.

Of the two time is a more mysterious entity than space, It

is rather interesting to speculate on the reason for this.

We as individuals are somewhat of the nature of four dimen-

sional worms - relatively extended in the time dimension.

Thus we are much more intimately associated with time than

SSi<
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with space and this may conceivably explain why we regard

it as so mysterious.*

Dynamics of the Special Theory of Relativity

It is clearly impossible to detect uniform motion.

This implies that the laws of motion must have the same form

relative to all inertial observers,c-_ i.e., the equations

of motion if correctly formulated must be invariant with re-

spect to the Lorentz transformation. To put it another way,

the terms appearing in the equation must transform according

to the same rules. (They must be vectors or tensors in the

revised 4 dimensional sense.) Clearly we will be assisted

in this reformulation by the fact that our modified equations

must tend to the Newtonian form as V ,0.

Look at the equations of motion as formulated by Newton.

d__ (mvi) = X.
dt --1

where (i = 1,2,3)

dxi

V i = --dt

(16.13-1)

* By the same token we find material thin_3s much less

mysterious than our own psyche.

** Newton concurred in this and his equations of motion are

indeed invariant with respect to Galilean transformation.

His error lay in assuming that the Galilean transformion

accurately described the transformation from one inertial

frame to another.

• 5S <
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Consider the velocity vector vI v 2 v 3 . This is not

a vector in the extended 4 dimensional sense. Let us for

a moment look at the situation of a particle moving with

relatively low velocity relative to our own x_t reference

frame.

dt s

X

Figure 16-6

Its world track will depart only slightly from the time

axis. Consider a segment of its track ds. At low velocit-

ies it would hardly be surprising if ds were confused with

dt since the two are so nearly equal.

dxI dxI dxI dt Vl

In place of vI =-- introduce Ul =- = _idt ds dt ds - _2

dx2 dx 2 dx 2 dt v2

v2 - dt u2 ds dt Us _l- _2

v3 dt u = dt.
ds dt ds _ i _2

dxh dx4 dt ic

u4 ds dt ds

$83<
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(N.B. u I u 2 u 3 u4 is a proper vector in our 4 space.

Moreover its spatial components u I u 2 u3 tend respective-

ly vI v 2 v3 as velocity tends to zero thus it satisfies

all the requirements imposed in this reformulation).

By the same token in the left hand side of (16.13-1)

we replace differentiation with respect to t by differen-

tiation with respect to s. On making these substitutions

we find the left hand side Is now truly invariant with re-

spect to Lorentz transformations. We must similarly doctor

the right hand side. Here we need to replace the force

vector X I X 2 X 3 by an appropriate 4 vector. Electro-

magnetic theory tells us how to make this generalization.

X I X 2 X3 are replaced by K I K 2 K 3 K 4

XI X2 X} i F" V
where KI = ; K2 - ; K3 = ; K4 _

(K I K 2 K 3 K 4 is a proper vector and moreover its three

spatial components tend to X 1 X 2 X3 at low velocities.)

Thus in place of Newton's equations we have

d__ (mui) = _
ds

(i = 1,2, 3, h)

Writing this out in terms of xyz coordinates

(16.13-2)
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x= -- or m -- .=X

,(..,°_
iY ds c ,,, _ =. iY 2

(16.13-3)

The fourth equation deserves special note.

d -F.V
dt

However,

mc2 = mc2 + _1 mv2 + ....

At all but the highest velocities it suffices to retain

only two terms of the above expansion"

Note the similarity with the classical equation

-.%

d__ (K.E.) = F • V
dt

Consider the collision between two lead masses (assuming no

rebound).

585<
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_'_ mc2 + = E F " V = 0

i mv 2 __constant

At impact the K.E. is entirely destroyed since there is

assumed to be no rebound. Since c itself is constant

the disappearance of a certain amount of energy is associat-

ed with an increase in mass.

AM = AE-_ (16.13-[_)
C

In place of the two classical laws

I Conservation of Mass

II Conservation of Energy

we now have only single law of conservation of mass + energy,

The laws of motion (16.13-3) between them express the con-

servation of momentum and conservation of mass and energy,

We shall find how these results are further generalized

in terms of general theory of relativity,

f
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General Theory of Relativity

Evolution of General Theory of Relativity.

Newton had recognized the impossibility of devising

an experiment to detect uniform motion (which in itself

implies the invarience of form of the equations of motion

relative to all sets of inertial axes see footnote page 16-9)

On the other hand, however, he believed it possible to detect

absolute rotation (his criterion: simply hold a bucket full

of water in your hand - if the surface of the water is curved

you are rotating, if it is flat you are at rest).* Bishop

Berkeley held a contrary viewpoint on philosphic grounds. A

hundred years later Ernest Mach discerned an illogicality in

the concept of absolute rest in a rotating sense. Mach argued

thusly; consider a pail rotating uniformily in a universe

otherwise at rest. Clearly there is nothing to distinguish

this situation from one in which the pail is at rest and the

remaining masses of the universe rotating about it. Thus if

by some means the masses of the universe could be set into a

rotation about a pail of water at rest in this instance also

the surface of the water would be curved. Thus the curvature

of the surface i.e., centrigual and centripetal forces etc.,

* The possibility of detecting a condition of absolute rest

implies that in a rotating frame indeed in accelerated frames
in general the laws of motion are not invariant in form -

this is reflected by the presence of additional terms i.e.,

Centrifugal Force Terms, etc.

$87<
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are in the last resort attributable to the influence of

the remaining masses of the universe. They are gravitational

in origin. Mach's hypothesis, if accepted, explains the pro-

portionality of inertial mass and gravitational mass, a

circumstance which Newton and other scientists who followed

him had been at a loss to explain. Inertial mass entered the

scheme of Classical Mechanics via Newton's law of motion,

gravitational mass on the other hand entered via Newton's law

of gravitation. Now in view of there being no discernable tie

up between these two laws the strict proportionality between

the two kinds of masses was somewhat perplexing. Bessel and

Eotvos had carried out delicate experiments with the aim of

detecting slight differences between them if they existed.

Their experiments consisted of measuring the direction of pull

on masses of various sizes suspended at the earth's surface.

Two forces in this instance are operative, a centrifugal force

due to earth's rotation (proportional to inertial mass)and

gravitation (proportional to gravitational mass). If the

inertial and gravitational masses were not strictly proportional

this would show up in a change of direction of the resultant

pull as the mass changed. No such effect was observed. Follow-

ing Mach, Friedman attemped to detect "centrifugal" force on

a particle at rest near the center of a rotating spherical mass.

This experiment too yielded a null result. We know now that

the effect for which he was looking was much too small to be
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detected. Einstein being a student of Machs was exposed

to and accepted his radical viewpoint. It is to Einstein

that we owe the rather convincing example of the "man in the

l.ift", an example which further supported the essential

equivalence of inertial and gravitational mass. Einstein

argued thusly - imagine a lift being acclerated upwards at

32 ft/sec. 2 in a gravity free field. All experiments per-

formed in this lift will yield the same result as would be

obtained if the experiment were performed in a laboratory on

the surface of the earth. Thus projected particles will in

both cases describe parabolic paths. Note, however, that the

man in the lift interprets mass as inertial mass whereas the

man in the earth bound laboratory interprets mass as gravi-

tational mass.

Having convinced himself of the equivalence of inertial

and gravitational mass it remained for him to explain the

latter.

The following story is attributed to Eddington. The

gist of it is this: Up to the time of the middle ages it

was popularly believed that the earth was flat. Let us

suppose this belief had persisted down to the present day.

A mercators chart would thus have been regarded as giving an

accurate description of the disposition of places on the earth's

surface. If our mercators chart were centered on the USA, the

chart would serve adequately so long as our Journeys were

SSS<
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limited to the confines of the USA. Consider, however, the

case of travelers to Greenland. They would find that they

apparently covered immense distances with relatively little

expenditure of effort. Scientists would doubltless explain

the phenomenon by inventing a demon who helped travellers to

Greenland on their Journeys. Being scientists they wouldn't

choose to use the word "Demon" but would probably use a word

of Greco-Latin derivation such as "gravity". Consider now

our scientific colleagues in Greenland. They would use a

mercators chart centered in their own country and they would

see the demon operative in the USA. The demon is never where

we are always where the other fellow is. If you'll reflect

a moment you'll see the situation is quite analogous to the

situation with respect to gravity. Just as the demon owes

his existence to the circumstance that we are _trying to force

a spherical surface into a flat surface so gravitational forces

result from our regarding what is in reality a twisted space

time continuum as being flat; (P_rtic!es instead of describ=

ing curved paths in flat space actually follow straight or

geodesic paths in curved space). Einstein having come this

far the rest was relatively straight forwardo

In reformulating his law of gravitation Einstein instead

of saying something about a force had now to say something

about curvature. Fortunately there are relatively few things

we can say about curvature. Thus in the case of a twisted

two dimensional surface in 3-space there is only a single

SSO<
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intrinsic measure of curvature- the so called Gaussian or

spherical curvature.* Passing from two dimensions to four

dimensions we find the latter by comparison relatively ingen-

ious in devising new contortions - this is exemplified by the

fact that it takes a Euclidian space of I0 dimensions to

accommodate a twisted four dimensional domain. In place of

a single intrinsic measure of curvature a 4-dimensional domain

has twenty - ten of which are pincipal and ten of which are

secondary.** What was Einstein to say about these curvatures?

If he'd set them all zero he'd have been back where he started

with flat space time. If he'd left them all entirely arbi-

trary this would have implied absence of any constraint or

law. He chose a middle of the road course and set the ten

principal measures of curvature equal to zero.

-X X X X

G_v= X X X =0

X X

X

(G_v is a symmetric tensor and has ten components as

indicated)

This still left him with ten degrees of freedom which was

sufficiently flexible to enable him to adopt his law to any

* There are, of course, other measures of curvature, however,

these are only meaningful to beings external to the sur-

face. We must clearly limit ourselves to measures of

intrinsic curvature.

** To understand the rather subtle distinction between principal

and secondary curvatures one has to delve rather deeply into

Riemannian Geometry - See Eisenhart: Riemannian Geometry.

Sgi'-
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particula_ physical situation,

Kinematics of General Theory of Relativity

What is meant by the curvature of space time. Clearly

there is no point to be served by attempting to look at the

thing from a conceptual standpoint. The best we can do is

to formulate the mathematical equations and draw our impli-

cations from them. It is a relatively easy matter to eval-

uate the gravitational field associated with a single mass

particle. This is tantamount to solving the gravitational

equation G_v = 0 imposing the condition of spherical

symmetry.

In figure 16-7 M is an isolated mass the presence of

which results in a deformation of space time. "A" is an

!

observer at a distance r o (as measured by its own

measuring rods).

!

ro

M A B

Figure 16-7

Relative to the observer A the interval separating two

@

contiguous events is given by the expressionS-

* The units have been selected to make the velocity of
light in free space unity.

$92<
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ds2 = - . + _'r--° r2_r' dr '2 _ r '2 de '2 - r '2 sin 2 e'd_ '2

\ r° /i 2m' 2m'_ ,2

+ _ + ro' r' jdt

(16.22-l)

m' is a measure of mass m as determined at "A".

r' is the distance to the two adjacent events.

dr' d@' d_' dt' are the coordinate differences

relative to A, separating the two events.

In the special case of an observer at infinity (de-

signated

becomes

dr2
ds2 _-_

(I - 2-m)
Z'

B in figure 16-7) the expression for interval

- r2 de2 - r2 sin2 e d_2
2m

÷ (i- 7) dr2

(16.22-2)

Let us suppose the observers A and B

same pair of events. The interval ds

same for all observers.** Hence

both observe the

separating is the

* Note mass m appearing in (16.22-2) is to be distinguished

from the mass m' appearing in (16.22-I) since it is to be
expected that different observers will assign different

measures to the mass of the gravitating body.

** ds provides an absolute measure of separation (See Special

The o ry ).

5_q<
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f_ ÷ 2m, / i1

" 2 2 2ds2 - 1"-2_, "2m'i '2d8' - r' sin 2 8 - dt'

\ +ro ro'

dr2-r2de 2- r2 sin2ed_ 2 + (I- r2-_m)dt2

16.221

(16. 22-3 )

This differential relationship is strictly analogous

to the relationship

c2ds 2 = _ dx2 _ dy2 _ dz 2 + c2dt 2 =_ dx ,2 _ dy! 2_ dz ,2 + c2dt ,2

which appeared in the Special Theory of Relativity. In the

Special Theory we were able to integrate the expression

quite simply. With regard to (16.22-3) no one to my know-

ledge has been clever enough to express the relationship in

integrated form. We do not therefore have in the case of the

gravitational field the equivalent of the Lorenz equations

of Special Theory. Fortunately we are able to deduce quite

a lot from the relationship in its differential form.

Variation of the Velocity of Light

The velocity of light is obtained by setting

Thus in Special Theory

dx2 .dX 2 + dz2 v2 = c20 = 1 - or
c2dt 2

i.e., the velocity of light is uniformly equal to c.

We derive an expression for the velocity of light in

the gravitational case by again setting ds = O.

S 4<
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Thus for observer A

I _ +2m' 2m,l2m'

1 /

+ r '2 sin2e,_ ,2 = i + 2m'
I

r o

2m '

r I

N.B. The velocity of light varies with direction.

in the case of transverse propagation (@' varying

and _' constant)

I 2m ' 2m' _ 1/2c = 1 +_-_- r, /
0

whereas in the radial direction

2m' 2m'_I +--

r 9' - r' /

c - _ 2_, \ z12
l+r' I

Restricting our attention to radial propagation as

Thus

r t

r I

becomes smaller i.e., the more closely we approach the

gravitating mass the more sluggish does light become. On

the other hand as r I-----+co

1 2m--_'_z/2c---_ ÷r' / >I

Bearing in mind that in terms of present units the velocity

of light in free space is unity. Thus for the observer A

the velocity of light can be either less than or greater than

its velocity in gravity free space.

For the observer at infinity

(16.221-I)

This equation at first sight has •rather startling

impli c at ions. i.e., if we make m large enough and r
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small enough c can be made zero or indeed negative.

This clearly demands further scrutiny. Let us to begin

by seeking the radius of a mass (having uniform density

equal to that water) such that at its boundary

and hence c = 0.

Let the radius of the mass be R x l0 6 Kms

Mass of sphere =

Mass of the sun =

m =

The re fo re

_ (R lO6)3 x (105)3X gms.
3

_ _ (0.695 x 106) 3 x (105) 3 x 1.41 gms.

4 R3 x x x 1.5" l018 io15
kms.

2m
--= 1
r

s 0.6953 x 10°8 x 1015 x 1.41
3

2m _ 3R3

R R x 106 x 0.6953 x 1.41 = 1

R2 0.69_ x 1.4_= x 106
3

R = 395.

i.e., the radius of the mass in question = 395,000,000 kms.

If we delve mnre d_.A_Iv I_ th_ _=I +_a_ _ _

that this mass results in a closing in of space upon itself,

Thus the presence of mass induces a curvature of space time.

Adding more and more mass produces ever greater distortion

and if we add enough it will cause space to curve back on

itself and become closed. If we direct a light signal to-

The m appearing in omr equations for interval though

proportional to mass is not measured in gms. As a

result of our choice of units it has dimensions of length.

Expressed in appropriate units the sun's mass is 1.5 kms.

.... - 596<
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wards sueh a mass as it approaches its boundary the light

signal will slow down to zero and will never actually attain

it. A material particle if projected towards it can therefore

never reach it. Thus there is no possibility of our adding

more water from the outside. Can water be added from the in-

side? If we look at the relevant equations we find the

velocity of light is zero at all interior points and that

clocks stand still. There can be no activity whatever, there-

fore, on the inside. It is impossible to send a signal from

an interior point to an exterior point and vice versa. If

such masses exist there can be no means of our knowing it.

Let us return to rather more mundane matters.

Time Dilatation in Gravitational Field.

In the Special Theory we were able to evaluate time

dilitation effects on the basis of the differential expression

and we can do likewise here. Consider in the first place a

clock at rest and let us compare its timekeeping with our

reference clock at infinity.

Since the clock is assumed to be at rest dr = d8 = d_ = 0

ds2 = (I- p) dt 2

Reference
clock

(Distance as measured by

observer at infinity_ Q

• --4J. (_

Clock under
observot|on

dseThe clock under observation marks off true interval

SS7<
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d s Iclock under observation) = i - 2m
dt (clock at infinity) r

(16.222-1)

To our observer at infinity the clock under observation

2m

appears to be running slow by a factor 1 - --- . i.e.
r •

the more closely the clock approaches the gravitating mass

the more sluggish it appears to become. Table I tabulates

the degree to which clocks located at the surface of various

gravitating bodies are slowed down relative to clock at

infinity. (Effects of rotation of bodies are ignored.)

Sun

Typical red giant

( O Scorpii A).

TABLE I

Extent to which clocks

run slow referenced to

m(kms) Radius (kms) clock at infinity

1.5 2 parts in 10 6

4_5.0 1/8 parts in 10 6

Typical whit_ d_.e 1 I,I,

( Q Can.MaJ. B).

695,000

480 x
695,000

_I,
vev_ X

695,000
>.q parts in IU #

(1/2 hr. in a year
approximate )

We note from this table that the most dense agglomerations

of matter we know of i.e., the white dwarfs, result in only

a slight wrinkling of space time. Turn next to the slowing

down of clocks carried by bodies moving in gravitational fields.
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dr2 r2 r2 2m
ds2 = - _- d82 - sin28d_ 2 + (I- _)___oat2

r

(i 2m ( )

m

Now P.E. = - -
r

(P.E. is referenced to infinity) (16.222-2)

2 2 2
•2 r2 r2 ;2 ÷r sin 8 _ (16.222-31K.E. =r ÷ +

In the unit system we have adopted the expressions of P.E.

2
and K.E. are their values in customary units divided by c .

Both are therefore small quantities and can be treated as

such. To a first order therefore:

ds_2 = l * 2 (PE) - 2(K.E.)dt/

d s (clock in motion)
dt (reference clock at

infinity )

= 1 + (P.E.)-(K.E.)

(16.222-/$)

Thus because of their smallness the effects of gravitating

field and the motion of the body in question can be super-

imposed.

Apply (16.222-4) to a clock carried by the earth (effects

of earth's rotation about its axis are quite negligible).

The influence of the gravitational field results in a slowing

down of 1 part in 108. In addition since the earth is

following to all intents and purposes a circular path the

K.E. of its motion is equal to about 1/2 (P.E.) and hence,

the motion results in a further slowing down of about
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1/2 part in 108 . Hence aggregate slowing down amounts to

about 1-1/2 parts in 108 . In the case of Neptune the aggre-

gate slowing down amounts to about 1/3 part in 109 .

Consider next the case of spaceship following the elliptic

orbits designated I and II in figure 16-8.

--Neptune orbit

Figure 16-8

Orbit I. The spaceship approaches close to the Sun and

by comparison with earth's clocks the clocks carried by the

spaceship will be running slow. In this instance the space

traveller will age somewhat less than his earthbound counter-

part.

Orbit II. A significant portion of the time is spent

in relative close proximity to Neptune orbit where clocks run

fast relative to the earth. On such a voyage this space

•, • 600<
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traveller will be somewhat older on return than his earth-

bound counterpart.

Bear in mind, however, that the extent of relative

aging is so slight in all interplanetary flights as to be

utterly insignificant from the point of view of changing

man' s lifespan. The only way in which his lifespan could

be materially extended is by providing him with a means of

attaining velocities comparative in magnitude with speed

of light.

A further example of somewhat current interest is the

possibility of verifying the general theory by comparing

the timekeeping of a clock carried by a satellite with an

identical clock at the earth's surface.

For a consideration of this problem it suffices to dis-

regard all masses save that of the earth. Let our observer

at infinity make the comparison for us.

The clock on the earth's surface is slowed down as the

result of it being in the earth's gravitational field (the

additional slowing resulting from the earth's rotation is

quite negligible).

Satellite
orbit

Figure 16-9
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The clock of the satellite is slowed down:

(a) As a result of the earth's gravitational field.

(b) As a result of its motion in its orbit.

If we suppose the satellite to be in a relatively tight

orbit around the earth the gravitional affects are about

the same on both clocks. _nd the difference in their re-

spective rates is attributable almost wholly to the motion

of the satellite in its orbito Thus experimental comparison

of their rates of timekeeping _uld provide us with a test

of the Special Theory of Relativity rather than the General

Theory. A test of General Theory could be made by placing

the second clock on the moon' s surface for then gravitational

effects are significantly different. Even here, however, if

a quantitive check on General Theory were to be made an

accuracy in time measurement of the order of I part in I0 I0

would be demanded. So much for the kinematics of General

Theory. Let us proceed now to the discussion of Relativistic

Dynamic s•

Dynamics of General Theory of Relativity

As we have had occassion to mention previously there

is no means of our detecting absolute rotation or indeed

acceleration in any shape or form. Clearly then this implies

that our equations of motion must assume identically the

same form in all frames of reference. For otherwise if the

form of the equation changed as we passed from one accelerated

frame to another this fact could in itself be utilized to

802 
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distinguish one accelerated frame from another and hence,

define zero rotation etc.*

All frames of reference are then equivalent and the

equations of motion if correctly formulated must therefore

be invariant with respect to quite arbitrary transformations

of space time. This invariance will be achieved if we can

express our equations in tensorial form (i.e., all terms

having the same tensorial characteristics and hence, subject

to the same transformation rules).

In Galilean frame of reference the classical equations

of motion assume the form:-

8_2p+ 8(pvi) = 0 (equation of

8t 8xi continuity) (16.23-1 )

Dv . Fe ÷ Fi (equation ofPDt
momentum) (16.23 -2 )

(external (internal

forces) forces)

With reference to external forces (i.e., gravity and inertial

forces) these have been shown to be fictitious (they result

from our mistakenly regarding what is in reality a twisted

space time continuum as being flat) and can therefore, be dis-

* In the classical set-up the eouations of motion did assume
characteristic form when referred to rotating axes, i.e.,

Centrifugal and Centripetal forces appeared. By ensuring
that these inertial force terms vanished we were able to

define a condition of absolute rest in a rotational sense.
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regarded. We cannot so easily dismiss the forces

since these are atomic in origin.

We can rewrite (16.23-2) in the form

8X

_A =--AA (j -l, 2, 3)
p 8vj + pvi 8xi8t Bt

Fi

(16.23-3)

or making use of (16.23-i)

a(_vj) a
+- (PViV j - Xij) = 0

8t 8xi
(16.23-_)

Following the example of Special Theory, we replace it

by x4 • If we then define

Tij = Tji = PViV j _ Xij (i,j = l, 2, 3)

Ti4 = T4i = ipv i

(16.23-5)

Then the classical equations of motion (16.23-1) and (16.23-4)

can be expressed in the symmetric form: -

(j = l, 2, 3, 4) •

Thus setting J = i, 2, 3.

axl ax2 ax 3 ax4

a_ a(ipvi). dt__
8xi (PViVj- Xij) + at dx4 = 0 .

...... 604<
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8 a

(p_j)+_ (pv_j- x_j). o

Setting J =

a(pvl) ÷ i a ._ ap dt = 0

iax I _ (pv2) + iax 3 (pv3)- at dx4

ap ÷ a___
at axi (PVi) = o .

However, Tij is not a tensor since viv j are not even

vectors in the _ dimensional sense nor is stress component

Xij a tensor in a 4 dimensional sense. We proceed to doctor

the equations in much the same way as we did in Special Theory.

Thus in place of the velocity components:

dx 1

Vl dt we introduce

dx 1
Ul = d--s-= Vl dtds

dx2 dx2 dt

v2 dt u2 ds v2

v3 dt u3
ds

.-_A.i dt
u4 ds ds

d__.5_ I
N.B. ds at low speed and the spatial components

of our h vector
--mb

u will tend to equality with our classical

velocity vector -_ .

In addition we seek a new stress tensor X iJ (i,J " 1,2,3,4)

such that at low speeds the spatial components of

Xlj..--_ xij (i J = i, 2, 3).
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and at the same time

Having proceeded thus far redefine

and X _ -----._0

Tij by replacinE

vI v2 v3 by uI u2 u3 uh and Xij by X ij

Yielding

Tij --Tji = Puiu j - Xij (i,J = 1,2,3,4) (16.23-6)

TiJ as defined by (16.23-6) is a tensor which

approximates closely to (16.23-5) at low speeds. In our

Galilean frame of reference it seems reasonable therefore,

to replace the classical equations by the equation

8Tij
-- = O

8x i

or ]_iv T = 0
ij

This equation being in tensoral form it is immediately

applicable to all frames of reference (in which divergence

is appropriately interpreted)

Div TiJ = 0 or after we can write it alter-

natively as

(16. 23-7 )

Let us look at the equation of motion a little more closely

mv (zj) _ o (16.23-8)

Whenever the divergence .of an entity vanishes this implies per-

manence of the entity in question, i.e., the entity in this

instance, the stress-energy tensor, is conserved.
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Thus by making our transition from classical mechanics

to special relativity we replaced the two laws of conservation

of mass and conservation of energy by the single law of

conservation of mass ÷ energyo We have now generalized even

further and shown that what is in reality conserved im the

stress energy tensor which in addition to embracing mass

and energy, has momentum and internal stress as additional

facets.

It is rather interesting to apply the equation of motion

In this(16.23-8) to the case of the single mass particle.

instance the equation of motion assumes the form

dxG-_ = 0d2 + (c_,_ _-s ds (16.23-9)

This is the equation of a geodesic i.e., particles describe

geodesic (or straight) paths in curved space time rather

than curved paths in flat space time; this latter represent-

ing the classical viewpoint.

We can rewrite (16.23-9) in the form

ds ds

Compare this with the equation of motion as derived on the

basis of Special Theory of Relativity

d (m ds-_) = KI_

Bearing in mind that the only forces we have taken into

consideration are the gravitational forces (and, of course,
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inertial forces) we note that in the formulation of general

relativity in place of force we have the expression

_m
ds ds which defines a twisting of our reference

(4, _} is intimately tied up with ourframe.* Since

choice of reference frame which can be changed quite arbi-

trarily it is for this reason we regard forces and the associ-

ated concept of potential energy as quite fictitious. Thus

we can deliberately choose a twisted reference frame (i.e.,

accelerated frame) in flat space time. In this instance the

forces (as manifested in the term _ m (_, _ dxcds dxBds )

which appear in our equations of motion are of reducible

nature and can be removed at will. (i.e., centrifugal and

centripetal forces are example_) On the other hand if space

time is itself twisted there does not exist a transformation

the Christoffel three symbols (c_, _which makes

vanish and in this case the force field is irreducible (i.e.,

non-uniform _" .....iAeld of _ gravitatir_ _,i_s.

It may be shown that Div (Gj* ½ g_G) = O.

It would be natural thePefore to make the identification

GU 1 u u
÷ - g_ G --
2 (16.23-1o)

This relationship is of significance in the following

* No_ be it noted a twisting in space time - for the symbol

(a_, _ ) is not a tensor and hence, does not define

anything intrinsic in space tim_.
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l/

respect. The left hand side involves G_

which the law of gravitation is formulated

The right hand side involves

law of motion is formulated

(16.23-2) which ties G _

in terms of

0 ).

TJ in ter,ms of which the

((TJ) v =0). By virtue of

and T_ together we

would deduce that the law if motion is deducible from the

law of gravitation and vice versa.

It is to Eddington we owe the following rather graphic

explanation of the nature of this tie up.

Figure 16-10

Consider two material particles in space time. Along

their world lines space time is creased (figure 16-10). The

law of gravitation states G_u = 0 in the intervening space,

in other words, nature is a rather fastidious tailor who will

not tolerate ripples in free space. Such being the case the

creases must run in prescribed directions if ripples are to be

avoided. Thus the relative motion of the particles is the

direct outcome of the law of gravitation.
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SECTION XVII

ENVIRONMENTAL REQUIREMENTS

Introduction

Prior to a study of the problems confronting man in

space travel it perhaps would be proper to list some of the

reasons given as to _why it would be desirous to have manned

space vehicles.

The most sublime reason given is that man's expansion

into new lands is necessary for his survival and therefore,

because of the limitations of earth, the survival of the

human race depends upon space travel; there being an esti-

mated i00,000 planets in the known universe capable of

sustaining life as we know it.

The reason most often given for manned vehicles is that

generally, man has a much greater tolerance to vibration,

more versatile than the most elaborate electrical brain or

man-made man.

Finally, the proposed "National Aeronautics and Space

Act of 1958" in part declares that "adequate provisions ...

be made for the development ... of ... satellites and other

space vehicles, manned and unmanned .."

Initial steps taken to obtain recruits for the space

vehicles would be to screen applicants to assure that they

" 610<



17 - 2

stand up under the physical and mental stresses commonly

experienced by flying personnel such as those induced by

hazards, combat, authority relations, space living con-

ditions, and separation from family. A recruit of mature

Judgement and emotional stability is desired.

The manned vehicle will be subjected to high linear

accelerations and possibly some stabilizing rotation during

launch. While in orbit or while traveling within the solar

system the vehicle, equipment, and occupants will experience

weightlessness, cold, heat, darkness, brilliant sunlight,

vacuum, relatively unknown and unnatural atmospheres of

other planets, cosmic radiation and meteorites. The final

stages of travel, re-entry into earth's atmosphere or entry

into any planets atmosphere, will probably mean the space

vehicle will experience high aerodynamic heating and the

occupants will feel the effects of rapid deacceleration.

Man has, rather definite, but most certainly, limita-

tions, as to what he can withstand physically and still be

able to perform prescribed tasks. Man's physical makeup

has remained effectively constant over the years and is

expected to remain so in the foreseeable future. These

limitations will necessarily be considered then in the

design of any manned vehicle.
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17.1 Launching of Vehicle

Presently reasonable linear accelerations and time-

durations needed to place a three stage rocket in an orbit

about the earth have been calculated to be of the following

order:

5

0
0 -27,_e Xec.
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Also the time-duration of continuous accelerations

required for a vehicle to reach the escape velocity of the

earth have been calculated to be:

Acceleration (g) Time endured

3 9 min 31 sec

4 6 21

5 4 45

6 3 _8

7 3 i0

8 2 _o

9 2 2O

i0 2 6

Humans have withstood these accelerations in a centrifuge

for the listed times without blacking out. In fact the

subjects riding the three-stage rocket-launch cycle felt

good enough to have the test repeated several times in

succession. One man withstood 17 g's for a minute with

the acceleration acting in a direction nearly at right angles

to the spine.

The subjects, withstanding i0 g's, during a period of

2 minutes and 6 seconds were able to converse in mono-

syllables. Their vision was clear, and they were mentally

alert and able to respond to visual and auditory signals.

They also retained relatively unimpaired control of their

hands, wrists, and ankles.

Generally speaking the individuals tolerance of linear

61S_
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acceleration acting from head to foot is a function of

the column of arterial blood, between the heart and brain,

that is approximately 12 inches in height. The heart

normally pumps blood up this column at a pressure of 120 mm

Hg. At an acceleration of about 5 g's the downward force

acting on the blood in the artery about equals the upward

force. The blood cannot then flow to the brain and eyes

and also the blood in the lower body and extremities can

not return to the heart. The result is that the eye, the

first to notice an oxygen-carrylng-blood lack, greys out

between 3-5 and 5 g's and blacks out between _ to 5.5 g's.

When the g force is increased to _._ to 6 g' s and maintain-

ed for three to five seconds unconsciousness will result.

We have mentioned previously, however, that human

subjects have withstood as high as 17 g's without losing

consciousness. It was found that if the acceleration occurs

from the front to the back of the body, the subject being in

the supine position, or from the back to the front of the

body, the prone position, human tolerance to acceleration is

increased considerably. Tolerances of the average man to

various linear accelerations for a given length of time are

shown in figure 17-1.

In figure 17-2 the tolerances of five human subjects

to linear accelerations at various _degrees of supination are

given. In an upright position the subjects blacked out at

about h g,s, however, when supinated 85 ° the blood was not

subjected to pooling and they all withstood 15 g's without
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blackout.

When subjected to minus g, acceleration acting from

feet to head, the blood rushes to the head causing an

increase of pressure in the brain. The practical limit of

tolerance is about a minus 3 g's for l0 to 15 seconds. The

so-called red out, occuring at minus g accelerations, is

apparently due to the lower eye lid acting as a red curtain

over the eye.

If the space vehicle is rotated or tumbles during

flight and if the occupants rotate or tumble with the vehicle

another physical problem is encountered of which the human

body has but a certain endurance. When the body is rotated

the blood tends to accumulate at the extremities. In

figure 17-3 are presented the results of tests of humans

being rotated about ax@s through the heart and pelvis region.

The tests were run at different revolutions per minute and the

duration of time spent at each rpm was limited by the occur-

ance of pain and ocular hemorrhage. The greatest endurance

occurred when the body was rotated about an axis through the

he art.

A g-suit will increase tolerance of plus acceleration

about 2 g' s. What is probably an ultimate in a "g-suit" is

obtained by immersing the body in a capsule of water. As

the capsule is subjected to increasing g's the increasing

water pressure on all parts of the body prevents pooling of

the blood and g-tolerance is greatly extended. An additional

6 5<
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advantage of this type "g-suit" would be relative

freedom to move the limbs.

Adequate provisions should be made to protect the

orbiting vehicle and contents from the heat and noise

generated by the propulsion units.

Somewhat of a guide to noise level restrictions may

be derived by knowing that the ear usually feels uncom-

fortable at a noise level of 120 decibels and feels a

strong tickling sensation at 130 decibels and deep pain

at I_0 decibels and above. Men have withstood 115 decibels

for a 56 hour period. This noise level, however, caused

a temporary hearing loss of approximately 50 decibels which

cleared up in _ days. A hearing loss of 50 decibels is

considered a serious hearing impairment and makes it

difficult to understand even loud speech.

Orbiting and Travel in Space.

While in space the temperatures to be encountered

have the aweinspiring range of from near absolute zero

(-273°C) in the shade of some planets to near 6000°C near

the surface of the sun.

Although it may be difficult, temperature can be re-

gulated within a space vehicle by establishing a balance

between reflectors and absorbers on the vehicle surface to

reflect and absorb radiant heat, primarily from the sun.

61.'_6<
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A few measurements made in the nose section of the

satellite, Explorer I, while in orbit, are presented in

figure 17-_ along with the calculated temperatures that

were expected to be measuredo

Human tolerance to heat and cold depends upon the

body environment, health, activity, and type and amount

of clothing worn. Safe heat and cold exposure times to

air over a range of temperatures for normal healty men at

rest, clothed and partly or wholly exposed, in a black-

walled room free of forced draft and radiation are presented

in figure 17-5.

Some pain may be experienced by the human skin if it is

heated to h_°C and at 45°C the pain becomes unbearable. If

the skin is held at a temperature of 55°C for more than i0

seconds burns will occur.

Time-tolerance to cold exposure for humans, sitting and

doing no more than light manual work, for several types of

clothing are given in figure 17-6.

Additional experience gained by the personnel winter-

ing at the South Pole indicates that man, properly clothed,

can withstand -lO0°F for several hours. They also found out

that the pain felt at plus _O°F, if improperly dressed, is as

much as can be felt at -_O°F. The reason given is that the

nerves are limited to the amount of pain that they can feel

due to cold.

6 7<
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Combinations of vehicle interior air temperature,

interior surface temperature, and relative humidity can

cause interior frosting. Frosted instruments, control

knobs and observation ports may be uncomfortable and a

hazard to the safety of the vehicle. Curves similar to

those shown in figure 17-7 may be of convenience to the

designer.

The effect that the strange and mysterious weightless-

ness or zero g state may have on man over prolonged periods

will probably not be resolved until man is put into orbit.

Weightlessness can be felt for a few seconds during a dive

into a swimming pool or when Jumping down to the ground

from above until the resistance of the air becomes appreci-

able. In experimental work with a F-9_c airplane weightless-

ness has been experienced for periods of h3 seconds by fly-

ing in a prescribed parabolic arc. (figure 17-8)

Subjects experiencing zero g in these tests had varied

reactions. Most, however, enjoyed the weightless state.

A sobering thought on weightlessness is provided, however,

by an experienced _est pilot Major Chuck Yeager, who, after

8 - I0 seconds at zero g, felt his head grow thick and he

got the impression that he was spinning around slowly in no

particularly defined direction.

Here on earth, many persons have chewed, swallowed and

begun to digest food while upside down, or effectively at

minus one g and hence, could prQbably eat with little or no
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difficulty at zero g. Drinking, though, while in a

weightless state may cause drowning; for liquids would

float freely and could flow into the nose. However,

squeeze tubes could be used to force fluid into the mouth

where muscular action would move the fluid down the throat.

Man orientates himself in an environment by using three

different body systems: the eye; the semicircular canals

and otolith organs of the inner ear; and by the kinesthetic

system. At zero g the eye will be a reliable system for

orientation. However, it has been determined that two of

the three systems are required for positive orientation.

The three semicircular canals, aligned in the three

planes of space, and the otollth organs of the inner ear

are responsive to the rate of rotation of the head and

linear accelerations along one particular direction re-

spectively. These organs evolved in a state of one g and

adjustment to the zero state will have to be made.

The kinesthetic system gives us a sense of orientation

through the nerves in the skin, muscles, and connecting

tissues of the body. Here on earth the body can be sub-

Jected to a one g gravity field at any one time in one of

six directions (to the right, left, back, front, and up

and down) without undo discomfort. Therefore it iS expect-

ed that the kinesthetic system will adjust readily to the

zero gravity state.

6 .(9<
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17.3 Air Equivalent

The oxygen partial pressure at sea level is 3 psi.;

at this oxygen pressure the blood is normally saturated to

95% and the body works fine. At 15,000 feet the oxygen

pressure is but 1.5 psi. and oxygen saturation of the blood

drops to 70%. The person used to breathing air at sea level

if suddenly placed in an atmosphere with but 1.5 psi. oxygen

pressure for about two hours would experience fatigue, drow-

siness, headache, and poor Judgment. Due to a practically

total lack of oxygen in space the air equivalent needed by

the occupants of any space vehicle will have to be taken

along.

It has been determined that one cubic ft/hr/man of

oxygen (probably carried in liquid state) is required when

light exercise or work is performed and 2.26 cubic ft/hr/man

under moderate exercise conditions.

Experiments have been carried out during the past several

years to develope an economical system to furnish oxygen and

food in a space vehicle from crops of algae. The system can

be described briefly. The algae takes light from the sun or

other source, carbon dioxide from the air, and nitrogen,

water, and other foods from the soil. These are synthesized

into carbohydrates, proteins and fats. Man could then eat a

percentage of the plants and breathe the excess oxygen pro-

duced by the plants during photosenthesis. Human wastes,

(including the carbon dioxide exhaled from the lungs) con-

taining almost exactly the _ec@ssary foods to promote
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vigorous algae growth, would be returned to the soll to

serve as food for the algae and to start the cycle anew.

An internal cabin pressure as low as practical would

be deslrable from the vehicle structural designers stand-

point. The differential between internal and external

vehicle pressures would then be at its lowest while orbiting

in the near vacuum of space. However, the vehicle would

probably be pressurized while on the ground Just prior to

launch. The most practical differential pressure value

then from a structural consideration would be the value

half way between the sea level pressure (if launched at

sea level) and the vacuum or zero pressure level. Under

these asstLmptlons the internal cabin pressure would be

7.35 lbs/In 2, equivalent to an altitude of about 18,000

feet.

One disadvantage of flying around in space enjoying

a cabin pressure of 7.35 ibs/in 2 is that it might slowly

or suddenly vanish. Machine failure or puncture of the

space vehicles skin could cause loss of pressure.

Suddenly losing the atmosphere or even a partial loss

of pressure will subject the traveler to decompression.

At the time of decompression, if the breath is held, or

swallowing is taking place, the rapid exit of air from

the lungs will be prohibited or slowed down. The trapped
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gases in the lungs will then expand causing chest pains,

blurred vision, nausea, and headaches. Other body organs

that are sensitive to pressure changes are the ears and

sinuses. In figure 17-9 are pressure differentials causing

middle ear pain.

In addition to the effects of rapid decompression even

a slow reduction of pressure on the body may produce ill

effects. Man breathes nitrogen in normal air and some of it

is dissolved in the tissues of the body. If the pressures

on the body are reduced to 615 lb/ft 2 the nitrogen will be

released from the tissues to form bubles in the Joints, called

"bends", and in the pulmonary mechanisms of the body, called

"chokes". Still further reduction in air pressure to about

130 lb/ft 2 will cause "boiling" of the body fluids. This is

called ebullism and is undoubtly the lowest pressure limit

a man could stand.

It was mentioned before that carbon dioxide is exhaled

in the breath. If the carbon dioxide content of the air is

allowed to build up to where it's more than 0.3% by volume

(ten times the normal content of air) it will cause labored

breathing , headaches, and if greatly exceeded even death.

Figure 17 - lO shows the tolerance of man to a sudden exposure

to varying amounts of carbon dioxide.

The standard technique of absorbing carbon dioxide in

a closed compartment is by using an oxide of an alkalin
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earth metal. An example being Lithium which requires

325 grams/man/day to remove the carbon dioxide that is

exhaled from the lungs at the rate of 1 kg/man/day.

Radiation

When man removes himself from the protective covering

of the earth's atmosphere he will be subjected to intense

solar radiation and primary cosmic rays.

Serious sunburn hazards will exist and the viewing

of objects will be anything but comfortable at high altitudes.

Inside a cabin, with sunlit patches adjacent to deep shadows,

viewing will be made even more uncomfortable, and it is re-

commended that sun glasses be worn.

The earth's atmosphere is equivalent to a lead shield

about three feet thick and when this is left behind the

space vehicle will be bombarded by the primary cosmic

rays.

When a primary cosmic-ray particle enters matter, such

as a space vehicle, it has two main processes by which it

may give up its great kinetic energy: it may gradually give

up its energy by ionizing the atoms of the material it enters,

or, it may collide with an atomic nucleus, producing a violent

nuclear reaction, called a "star". The energy of the ray is

distributed among the fragments of the colliding nuclei.

It's common to specify the radiation dosage received

in terms of intensity, or numbers of roentgens per hour

and the time of duration. A roentgen is the sLmount of
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irradiation which will produce 2.1 x 109 pairs of ions

in a cubic centimeter of air at O°C and 760 mm Hg pressure.

According to the Bureau of Standards, the maximum

permissible dose of ionization based on year-round exposure

for male hum_s is 300 milliroentgens per week for X-, _-,

and _-rays and 15 mr per week for Z-rays.

Up to I0,000 mr can be accumulated below the age of 30

and up to 50,000 mr below the age of [_0 years without damage

to offspring or shortening of llfe.

Meteorites

The meteorite Is the particle which causes the atmos-

pheric effect we see and call a meteor.

In navigating in space it would probably bebest to

avoid the fundamental plane of the Solar system, especially

between the planets Mars and Jupiter, where there are high

concentrations of meteorites.

Calculations have been made on the probability of a

apace vehicle being hlt and penetrated by a meteorite. The

calculations were based on the number of observations made

of meteors over a certain period. However, meteors are only

visible from a maximum of about 80 miles from the earth and

meteorites may be more abundant in space.

Chances of a space vehicle being penetrated by a meteorite,

according to these calculations, are about 1 in 2000 over a

6?4<
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2[_ hour period. Data collected from orbiting unmanned

vehicles will undoubtly be of great help in this respect.

Re-entry

The foremost problems to solve, or design for, during

re-entry are deacceleration and aerodynamic heating.

Human tolerance to various magnitudes of vehicle de-

acceleration can be considered the same as to acceleration

if the occupants face aft during the re-entry.

Aerodynamic heating during re-entry was considered

in previous papers.

f
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Glossary

Aeroembolism - decompression sickness

Astrobiognosis - the study of the support of life in space

Astronautics - design, production, and operation of space
craft

Bends - pain in and about the Joints due to the formation

of nitrogen bubbles

Blackout - loss of sight due to lack of blood in the eyes

Bioastronautics - human factors envolved in astronautics

Chokes - symptons of aeroembolism referable to the thorax-

blockage of pulmonary vessels by bubbles.

Clo - amount of clothing a seated man needs to be comfortable
in 70°F air with a relative humidity of 50% and air

movement of 20 feet per minute

Dysbarism - the effects of reduced barometric pressure on

the body

Ebullism - "boiling" of body fluids

Ecosphere of the sun - limited area or belt in the planetary
system within which life (as we know
it) is conceivable

Greyout - vision becomes cloudy due to lack of blood in the

eyes

Hyperventilation - breathing three a four times the normal
rate, thereby upsetting nature's balance

of oxygen and carbon dioxide, causing
dizziness and loss of coordination

Hypoxia - lack of oxygen in the blood

lliac crest - in the region of the dorsal and upper end of

the three bones composing either lateral half

of the pelvis

Kinesthetic apparatus - special receptors situated in muscles ,

tendons, connective tissues, skin, etc.
and their nervous connections with the

brain
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17 - 18

Milieu- environment

Otolith organ - cavity of ear responsive to linear
acceleration

Roentgen - an amoun_ of radiation as would have produced
2.1 x I0 v pairs of ions in a cubic centimeter

of air at 0°C, 760 mm Hg pressure

Squeeze - fluid and blood being squeezed into the lungs

Supine - lying on the back - opposed to prone

Trauma- an injury, wound, shock

Vestibular system - paired small balance organs and their
nervous connections with the cerebral

cortex as the center of perception

6L7<
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Test Facilities doing Work on Human Tolerances

I. Naval Research Laboratory, Washington, D. C.

2. U. S. Naval School of Aviation Medicine, NAS,

Pensacola, Fla.

3. Naval Medical Research Institute, Bethesda,

Maryland

4. U. S. Navy Aeronautical Medical Equipment Laboratory,

Philadelphia, Pa.

5. Naval Medical Research Laboratory, New London, Conn.

6. Aviation Medical Acceleration Laboratory, Johnsville,

Pennsylvania.

7. USAF School of Aviation Medicine, Randolph Field, Texas.

8. Aero Medical Laboratory WADC, Wright-Patterson A. F. B.,

Dayton, Ohio.

Holloman A. F. B., New Mexico

Gunter A. F. B., Montgomery, Alabama.

Army Medical Research Laboratory, Fort Knox,

Kentucky.

The Lovelace Foundation for Medical Education and

ReseArch; Albuquerque, New Mexico.
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